PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of a recuperator construction with CFD methods

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the work was initial modification of the construction of a commercially produced heat exchanger – recuperator with CFD (computational fluid dynamics) methods, based on designs and process parameters which were provided. Uniformity of gas distribution in the space between the tubes of the apparatus as well as the pressure drop in it were taken as modification criteria. Uniformity of the gas velocity field between the tubes of the heat exchanger should cause equalization of the local individual heat transfer coefficient values and temperature value. Changes of the apparatus construction which do not worsen work conditions of the equipment, but cause savings of constructional materials (elimination or shortening some parts of the apparatus) were taken into consideration.
Słowa kluczowe
Rocznik
Strony
567--576
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Chemical Engineering, Norwida 4/6, 50-373 Wroclaw, Poland
autor
  • Opole University of Technology, Faculty of Mechanical Engineering, Department of Environmental Engineering, Mikołajczyka 5, 45-271 Opole
Bibliografia
  • 1. Chang T.H., Lee C.H., Lee H.S., Lee K.S., 2015. Velocity profiles between two baffles in a shell and tube heat exchanger. J. Therm. Sci., 4, 356-363. DOI: 10.1007/s11630-015-0795-x.
  • 2. Gil S., Góral J., Horňak P., Ochman J., Wiśniewski T., 2015. Pressurized recuperator for heat recovery in industrial high temperature processes. Arch. Metall. Mater., 60, 1847-1852. DOI: 10.1515/amm-2015-0315.
  • 3. Goodarzi M., Nouri E., 2016. A new double-pass parallel-plate heat exchanger with better wall temperature uniformity under uniform heat flux. Int. J. Therm. Sci., 102, 137-144. DOI: 10.1016/j.ijthermalsci.2015.11.012.
  • 4. Jaworski Z., 2005. Numeryczna mechanika płynów w inżynierii chemicznej i procesowej, Akademicka Oficyna Wydawnicza Exit, Warszawa.
  • 5. Pal E., Kumar I., Joshi J.B., Maheshwari N.K., 2016. CFD simulations of shell-side flow in a shell-and-tube type heat exchanger with and without baffles. Chem. Eng. Sci., 143, 314-340. DOI: 10.1016/j.ces.2016.01.011.
  • 6. Wen J., Yang H., Wang S., Xue Y., Tong X., 2015. Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles. Int. J. Heat Mass Transfer, 84, 990-997. DOI: 10.1016/j.ijheatmasstransfer.2014.12.071.
  • 7. Yang F., Zeng M., Wang Q., 2015. Numerical investigation on combined single shell-pass shell-and-tube heat exchanger with two-layer continuous helical baffles. Int. J. Heat Mass Transfer, 84, 103-113. DOI: 10.1016/j.ijheatmasstransfer.2014.12.042.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5fccc30-107b-4ac0-b8c8-276b1cc29e4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.