Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The results of studies on the disintegration kinetics of the yeast Saccharomyces cerevisiae are presented. The process was carried out in a 500 W ultrasonic homogenizer equipped with a spherical working chamber with a volume of 100 cm 3. The concentration of the suspension of microorganisms was 0.05 g d.m./cm 3. The continuous phase was water solution containing 0.15 M NaCl and 4 mM K 2HPO 4. The kinetics of cell disruption were studied by the direct method. The theory of random transformation of dispersed matter was used to analyze the process. There was significant variation in the size of yeast cells. The range of changes in the values of parameters describing the size of microorganisms was divided into size classes. The kinetics of cell disruption in individual classes was described by a first-order linear differential equation. During the implosion of cavitation bubbles, the transformation volume of individual microorganisms is generated. It has been shown that as the volume of cells in subsequent size classes increases, their transformation volumes do not increase significantly. The safe volume for cells remains unchanged. As the size of the microorganisms increased, there was no increase in the constant rate of cell disruption.
Rocznik
Tom
Strony
art. no. e61
Opis fizyczny
Bibliogr. 19 poz., rys., tab
Twórcy
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
autor
- Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
Bibliografia
- 1. Benthin S., Nielsen J., Villadsen J., 1991. A simple and reliable method for the determination of cellular RNA content. Biotechnol. Tech., 5, 39–42. DOI: 10.1007/BF00152753.
- 2. Borthwick K.A.J., Coakley W.T., McDonnell M.B., Nowotny H. Benes E., Gröschl M., 2005. Development of a novel compact sonicator for cell disruption. J. Microbiol. Methods, 60, 207–216. DOI: 10.1016/j.mimet.2004.09.012.
- 3. Chisti Y., Moo-Young M., 1986. Disruption of microbial cells for intracellular products. Enzyme Microb. Technol., 8, 185–204. DOI: 10.1016/0141-0229(86)90087-6.
- 4. Chu C.P., Chang B.-V., Liao G.S., Jean D.S., Lee D.J., 2001. Observation on changes in ultrasonically treated waste-activated sludge. Water Res., 35, 1038–1046. DOI: 10.1016/s0043-1354(00)00338-9.
- 5. Doulah M.S., 1977. Mechanism of disintegration of biological cells in ultrasonic cavitation. Biotechnol. Bioeng., 19, 649–660. DOI: 10.1002/bit.260190504.
- 6. Dumitraşcu L., Lanciu A., Aprodu I., 2022. A preliminary study on using ultrasounds for the valorization of spent brewer’s yeast. The Annals of the University Dunarea de Jos of Galati Fascicle VI – Food Technology, 46, 141–153. DOI: 10.35219/foodtechnology.2022.2.10.
- 7. Geciova J., Bury D., Jelen P., 2002. Methods for disruption of microbial cells for potential use in the dairy industry- a review. Int. Dairy J., 12, 541–553. DOI: 10.1016/S0958-6946(02)00038-9.
- 8. Heim A., Solecki M., 1999. Disintegration of microorganisms in bead mill with a multi-disc impeller. Powder Technol., 105, 389-395. DOI: https://doi.org/10.1016/S0032-5910(99)00163-1.
- 9. Kacprowicz A., Trawińska A., Solecki M., 2020. Effect of ultrasonic homogenizer geometry on the disintegration of bakery yeast. Przem. Chem., 99, 211–214. DOI: 10.15199/62.2020.2.4.
- 10. Middelberg A.P.J., O’Neill B.K., Bogle I.D.L., Snoswell M.A., 1991. A novel technique for the measurement of disruption in high-pressure homogenization: studies on E. coli containing recombinant inclusion bodies. Biotechnol. Bioeng., 38, 363–370. DOI: 10.1002/bit.260380406.
- 11. Nogueira D.A., da Silveira J.M., Vidal E.M., Ribeiro N.T., Burkert C.A.V., 2018. Cell disruption of Chaetoceros calcitrans by microwave and ultrasound in lipid extraction. Int. J. Chem. Eng., 2018, 9508723. DOI: 10.1155/2018/9508723.
- 12. Patil M.D., Shinde A.S., Dev M.J., Patel G., Bhilare K.D., Banerjee U.C., 2018. Combined effect of attrition and ultrasound on the disruption of Pseudomonas putida for the efficient release of arginine deiminase. Biotechnol. Progr., 34, 1185–1194. DOI: 10.1002/btpr.2664.
- 13. Solecki M., 2011. The release of compounds from microbial cells, In: Nakajima H. (Ed.). Mass transfer – Advanced Aspects. InTech, Rijeka, 595–618. DOI: 10.5772/21525.
- 14. Solecki M., 2013. The theory of random transformation of dis- persed matter, In: Nakajima H. (Ed.). Mass transfer – Advances in sustainable energy and environment oriented numerical modelling. InTech, Rijeka, 3–30. DOI: 10.5772/52369.
- 15. Solecki M., Trawińska A., Kacprowicz A., 2021. The effect of cel size on the kinetics of yeast disintegration in a bead mill. Powder Technol., 380, 584–597. DOI: 10.1016/j.powtec.2020.10.091.
- 16. Weber S., Grande P.M., Blank L.M., Klose H., 2022. Insights into cell wall disintegration of Chlorella vulgaris. PLoS One, 17, e0262500. DOI: 10.1371/journal.pone.0262500.
- 17. Yusaf T., 2015. Evaluating the effect of heat transfer on cel disruption in ultrasound processes. Ann. Microbiol., 65, 1447– 1456. DOI: 10.1007/s13213-014-0983-z.
- 18. Zheng S., Zhang G., Wang H., Long Z., Wei T., Li Q., 2021. Progress in ultrasound-assisted extraction of the value-added products from microorganisms. World J. Microbiol. Biotechnol., 37, 71. DOI: 10.1007/s11274-021-03037-y.
- 19. Zielewicz E., 2016. Effects of ultrasonic disintegration of excess sewage sludge. Appl. Acoust., 103, B, 182–189. DOI: 10.1016/j.apacoust.2015.05.007.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5f9db43-a07f-4c40-8593-e2e3638337fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.