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Abstract 

On the basis of spatial geometrically nonlinear theory of elasticity by using quadratic approximations for 

components of the vector of displacements along the normal coordinate to the median surface is developed  
a new mathematical model of nonlinear dynamics of cylindrical shells with corrugated configuration for median 

surface. The perturbation method for the solution of systems of nonlinear differential equations for problems of 

determination of amplitude-frequency characteristics is generalized. In a combination of finite element and 
generalized perturbations methods, a new methodology for solving problems of free geometrically nonlinear 

vibrations of shells with complex guide geometry was developed and verified. With its help the influence of 

geometrical parameters of corrugating at circular coordinate on the main frequency of the elongated cylindrical 

panel is investigated. 
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1. Introduction 

Cylindrical shells are one of the most common elements of loaded constructions, 

mechanisms and devices for various purposes. This is due to their rational material 

consumption and the ability to provide the necessary rigidity in certain directions, which 

are determined by the peculiarities of operating conditions. As a rule, the stiffness in  
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a given direction of smooth shells is regulated by selecting the elastic characteristics of 

the used material during manufacture. However, in this way it is not always possible to 

achieve the required value of stiffness in this direction. Therefore, in combination with the 

above approach, methods are used to complicate the geometry of the middle surfaces of 

the shells [3]. For cylindrical shells, this approach is implemented by corrugating of the 

guide curve and/or generatrix [4, 5, 8]. The main property of such shells is their high 

anisotropy and stiffness in the transverse to the corrugating direction. We will note that 

the specified covers owing to insurmountable at present mathematical difficulties are 

investigated insufficiently. This is especially true of geometrically nonlinear deformation. 

In this direction it is necessary to note works [6, 7, 16, 17] in which questions of linear 

and geometrically nonlinear vibrations of corrugated cylindrical shells are considered. 

A significant number of works in which analytical and numerical solutions is given are 

devoted to the study of geometrically nonlinear vibrations of cylindrical shells on the basis 

of classical and generalized models of deformation. References to them can be found in 

[1, 18]. At the same time, these models do not take into account the spatial stress-strain 

state, in particular the pliability to transverse compression. This property is inherent in 

most modern materials, especially for polymer-based composites. Also, most of them 

neglect the components of the elasticity tensor corresponding to the transverse 

deformations. This can lead to significant errors in the design calculations of real thin-

walled structures both in terms of strength and the elimination of resonant phenomena 

under the action of cyclic loads. Therefore, the need to improve existing and develop new 

mathematical models and methods for calculating the dynamic geometrically nonlinear 

deformation of cylindrical shells with complex geometry of the middle surface, including 

corrugated, is fully motivated. This allows you to create an effective methodology for 

solving problems of determining their amplitude-frequency characteristics. 

2. 3-D formulation of the problem   

Let’s consider the curvilinear elastic layer attributed to the cylindrical coordinate system 

 =1 , z=2 , r=3  of thickness h . Its equations of vibrations for geometrically 

nonlinear deformation have the form [7]: 
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where Ŝ – nonsymmetrical Kirchhoff stress tensor whose components are defined as follows: 
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= – displacement vector, ik  – components of a symmetric Piola stress tensor ( ̂ ). The 

components of the strain tensor Ê  will be determined by the components of the displacement 

vector according to the following relations    
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Suppose that the generalized Hooke’s law is implemented for the layer of anisotropic elastic 

body. Then we obtain the following relationship between the components of the strain and stress 

tensors (elasticity relations) 

EC ˆ~ˆ = . (2) 

In equations (1) and (2) C
~

 – tensor of elastic characteristics of the layer, and   – 

its density; t  – time coordinate.  

Boundary conditions on the front surfaces of the shell 2/3 h=  for the free vibrations  

has the form  

0),2/,,( 21
3 = thS i  ,   2,1,0 = iii  , (3) 

and on its ends 0
11  =  at their hinged fixing on the lower front surface 2/3 h−= : 
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To solve the current problem, we considered the initial conditions in the form: 
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Here we have )3,2,1;1,0( == ikk
i  – predefined functions. 

(6) 

The motion equations (1) together with relations (2), boundary (3)–(5) and initial (6) 

conditions are a three-dimensional mathematical model in differential form that describes 

geometrically nonlinear vibrations of an elastic curvilinear layer. 

3. Variation problem statement 

In the general case, this problem is not amenable to analytical solution due to the currently 

insurmountable mathematical difficulties. Therefore, in most cases, when considering real 

structures using numerical methods. One of the most effective numerical methods for 

solving the above class of problems is the finite element method [2]. The vast majority of 

variants of this method are based on equivalent variation formulations of problems.  

For the variation formulation of the problem in this case, the principle of virtual work 

is used, which states that the work of internal forces is equal to the work of external forces 

on any virtual displacements. In integral form, this statement is written as follows [8]: 
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where  V  – the volume occupied by the elastic layer; 
)1(

2W  – Sobolev's space; Ê  – the 

linear strain tensor, which corresponds to the variation of displacements u


 ;  ̂  – Cauchy 

stress tensor. 
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Since )(tV  is unknown in the case of geometrically nonlinear deformations, in which 

the volume )(tV  differs significantly from the initial volume 0V , (7) in the initial 

(undeformed) configuration has the form: 
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where 
0

Ŝ  is the second symmetric Piola-Kirchhoff stress tensor, for which the formula is 

valid TFSP )ˆ(ˆˆ 1−= , where Ŝ  is the tensor from formula (1), and ugradGF T+= ˆˆ
 is the local 

motion gradient tensor; 
0

̂  – Green's deformation tensor, which corresponds to the 

variation of displacements 
0

u


 . 

“0” above the tensor and vector symbols means that their components are considered 

in the initial undeformed coordinate system. 

 

4. Geometry of an elongated cylindrical corrugated shell 

We have this case when  1/ Lh  and 

  2/,2/],,[],,0[:),,( 3213210 hhLV −+−=  ,  

where the coordinate system ( 1 , 2 , 3 ) corresponds to the corrugated middle surface 

[5], L  – the length of the arc of guide. 

The relationships between the Cartesian ( 1x , 2x , 3x ) and local coordinate systems 

are as follows  

)(cos))(cos(1 vA ggqRx += ;  22 =x ;  

 )sin())(cos(3 vA ggqRx += . 
(9) 

In (9) 
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corrugation (Fig. 1a); vg  – its frequency; R  – the distance from the axis coordinate to 

the middle surface of the non-corrugated cylindrical layer (Fig. 1b). 
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Figure 1a. Illustration of the geometric content of the corrugation amplitude Ag  

 

 
 

Figure 1b. Location of the middle surface of the corrugated layer relative to the basic 

cylindrical surface of the radius R  

 

Using (9) for the radius-vector of the middle surface of the corrugated layer we obtain 

3211 )())(()())(()( eSingCosgReeCosgCosgRr vAvA


 ++++= , (10) 

where  ie


, 3,2,1=i  are the base vectors of the Cartesian coordinate system. 

The expression tangent to the middle surface can be given the form 
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Taking into account (11), the expression for the normal to the middle surface has the 

form 
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Given (13), and the fact that 1)()( 11 =  nn
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, for the covariant 

components of the metric tensor we obtained 
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The Lame’s parameters for the middle surface of the corrugated layer, which are 

necessary for determining the components of the tensors in equation (8), are determined 

by the formulas 
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Therefore, for an elongated cylindrical corrugated shell we have 
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where  )( 1A  – the coefficient of the first quadratic shape, and )( 1K  – the main 

curvature in the direction the coordinates 1  of the middle corrugated surface [5]: 
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5. Reduction of Two-Dimensional Problem to One-Dimensional One 

If the thickness h  of the layer is much less than the length of the arc of the cross section 

02 =  of the middle surface 03 = , we can consider the components of the displacement 

vector 31, uu  distributed by the quadratic law along the coordinate 3  [6]: 

);(),,()(),,()(),,(),,( 3211231111101103111  PtuPtuPtutuu ++==  

),(),,()(),,()(),,(),,( 3213211131301303133  PtuPtuPtutuu ++==   
(16) 

where polynomials 

,)/(21)(;/2/1)(;/2/1)( 2
112311310 hPhPhP  −=+=−=   (17) 

and the coefficients 2,1,0;3,1),,( == jituij   
are unknown. 

Substitution (16) in the strain relations allows to obtain expressions for the components 

of the strain tensor Ê , which depend on only one coordinate 1 . Similarly, we obtain 
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expressions for the components of the stress tensor ̂ . Then after using the specified 

expressions in (8) and integration by the variable 3  we obtain [5, 6]: 
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C – block matrix of size 9х9: 
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ijС   – elements of the matrix of elastic characteristics of the orthotropic material for the 

layer at 5,3,1, =ji , when recorded through the components of the tensor Ê  (2);  

B  – block matrix size 12х12: 
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and the matrix 0B  of dimension 6x6 has the form 

),,,,,( 1615141312110 bbbbbbhB = , 

where 
Tb )0;3/1;0;6/1;0;3/1(11 = ;  Tb )0;3/1;0;3/1;0;6/1(13 = ;  

Tb )0;15/8;0;3/1;0;3/1(15 = ;  Tbbb )0;0;0;0;0;0(161412 === . 

 

Thus, the equation (18) is a one-dimensional variation problem on free vibrations of 

an elongated corrugated cylindrical panel constructed using quadratic approximations of 

displacements at the normal coordinate to the middle surface of the considered thin 

orthotropic elastic layer. 
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6. Solution Method 

To find the solution of the variation problem (18), we first use a one-dimensional scheme 

of the finite element method with linear approximations of unknown coefficients 

),( 1 tuij   by the coordinate 1  [2]. This allowed to obtain the resulting equation 
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  (19) 

here U


 is the vector of all unknown nodal values of the coefficients )(tu k
ij ; LK – linear, 

and  
)2()1(

, NLNL KK  – nonlinear stiffness matrices; M – matrix of masses [12]. 

 The solution of the system of nonlinear ordinary differential equations (19) is found 

by the perturbation method proposed in [10, 11] and generalized by the authors [12, 13]. 

Its essence is to consider a perturbed system of equations 
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where )10(    is the perturbation parameter. 

 In the classical case, the solution of the system (20) is given in the form 
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 However, with such a representation we get in the solution a secular term that is 

proportional to )sin( tt   . Therefore, it was proposed to generalize the perturbation 

method for the solving of the system of equations (20). This generalization consists in 

representing the linear stiffness matrix in the form 
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The consequence of substitution (21) and (22) in (20) and grouping of expressions at 

equal degrees  are the following equations: 
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The system (23) is linear with respect to the desired components )(0 tU


, )(1 tU


 and 

)(2 tU


 of approximation of the vector of nodal displacements )(tU


. 

Currently, there are a large number of methods for approximate analytical and 

numerical integration of such systems of ordinary differential equations. The authors in 

[12] proposed a method for obtaining a finite number of the first eigenvalues of the system 

(23) and forms of vibrations. Its verification was performed by comparison with the results 

of [9]. 

7. Numerical Results  

A corrugated in circular direction cylindrical shell with a guide length 2=L m, the radius 

of the middle surface of the shell, the front surfaces of which intersect the tops of the 

corrugations, 25.1=R m, its thickness 05.0=h m, elastic characteristics: 11
1 101.2 =E

N/m2, 3.013 = , 10
13 101.8 =G N/m2  and density 3108 = kg/m3  is considered.  

To study the influence of corrugation parameters on the amplitude-frequency 

characteristics of free vibrations at geometrically nonlinear deformation of the specified 

shell, we use the introduction in [18] of the concept of skeletal curves. 

They graphically illustrate the interdependence of dimensionless main own frequency 

LNL  /  and dimensionless amplitude hw /max . Here NL  and maxw  – the main own 

frequency and the corresponding amplitude for geometrically nonlinear vibrations, and 

L  – the main own frequency for linear vibrations. 

In fig. 2 the skeletal curves are given, which show the relationship between the 

dimensionless main own frequency and the amplitude of geometrically nonlinear radial 

vibrations of the considered shell at different values of the corrugation frequency vg . 

 

 
Figure 2. Dependence between dimensionless main own frequency and amplitude of 

nonlinear vibrations at different values of corrugation frequency. 
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Since the stiffness of the shell [18] is proportional to the main own frequency of its 

free vibrations, in this case the maximum stiffness is achieved at the corrugation frequency 

6=vg . 

 

 
Figure 3. Dependence between dimensionless main own frequency and amplitude of 

nonlinear vibrations at different values of corrugation amplitude Ag . 

 

In fig. 3 shows the skeletal curves of the relationship between the dimensionless main 

own frequency and the amplitude of geometrically nonlinear radial vibrations of the shell 

at different values of the corrugation amplitude. The values at which the stiffness of the 

corrugated shell in the transverse direction is less than the stiffness of the non-corrugated 

shell are revealed. 

8. Conclusions  

A methodology for determining the amplitude-frequency characteristics of elongated 

corrugated cylindrical shells under geometrically nonlinear deformation has been 

developed. It consists of a constructed mathematical model of the process of nonlinear 

vibrations and an analytical-numerical method of its implementation. Using it, the 

influence of corrugation parameters on the main own frequency of nonlinear vibrations of 

the specified type of shells is analyzed. This revealed the presence of such values of the 

parameters of corrugation, which achieves the maximum value of the stiffness of a 

particular elongated cylindrical shell. This result can be the basis for formulating the 

problem of the body of the optimal values of the parameters of corrugation in the circular 

direction of the elongated cylindrical shells according to the criteria of maximum rigidity 

with minimum material consumption. 
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