PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

NWA 6255 meteorite − Thermophysical properties of interior and the crust

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Differences in the thermophysical properties of NWA 6255 meteorite samples obtained from various locations with respect o the distance from the surface of the meteorite were evaluated by a differential scanning calorimetry (DSC). DSC is a perfect tool to experimentally verify theoretically predicted thermophysical properties of extraterrestrial matter. The specific heat capacity of the crust and the interior of meteorite were determined to be in the temperature range of 223‒823 K. Measured Cp values at room temperature for crust and for the interior of this meteorite were 602 and 668 J·kg–1·K–1, respectively. In addition, the phase transition of troilite from: (a) the fusion crust samples, (b) the edge part of the meteorite (1‒2 mm below the crust), and (c) the interior (over 10 mm below the fusion crust) was examined. It is shown that the shift of α/β transition peak of the troilite exhibits the temperature gradient evolved during atmospheric passage of a meteoroid. Moreover, the enthalpy changes of α/β transition were used to determine the troilite content in the meteorite samples (3.6 wt.%). Obtained data are in agreement with previous Leco method’s results, since NWA 6255 is relatively fresh find (W1) and troilite tends to oxidized quickly.
Czasopismo
Rocznik
Strony
33--44
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Lodz University of Technology, Institute of Applied Radiation Chemistry, Wróblewskiego 15, 93-590 Łódź, Poland
Bibliografia
  • 1. Alexeyeva K.N., 1958 – Physical properties of stony meteorites and their interpretation in the light of the hypothesis of the origin of meteorites. Meteoritika 16, 67–77.
  • 2. Allton J.H., Wentworth S.J., Gooding J.L., 1993 – Calorimetric thermometry of meteoritic troilite: Early reconnaissance. Meteoritics 28, 315.
  • 3. Allton J.H., Wentworth S.J., Gooding J.L., 1994 – Calorimetric thermometry of meteoritic troilite: Preliminary thermometer relationship, XXV Lunar and Planetary Science Conference. 25–26.
  • 4. Andresen A.F., Torbo P., 1967 – Phase transition in FexS (x = 0.90–1.00) studied by neutron diffraction, Acta Chemica Scandinavica 14, 919–926.
  • 5. Beech M., Coulson I.M., Wenshuang N., McCausland P., 2009 – The thermal and physical characteristics of the Gao-Guenie (H5) meteorites. Planetary and Space Science 57, 764–770.
  • 6. Bhandari N., Lal D., Rajan R.S., Arnold J.R., Marti K., Moore C.B., 1980 – Atmospheric ablation in meteorites. A study based on cosmic ray tracks and neon isotopes. Nuclear Tracks 4, 213–226.
  • 7. Consolmagno G.J., Schaefer M.W., Schaefer B.E., Britt D.T., Macke R.J., Nolan M.C, Howell E.S., 2013 – The measurement of meteorite heat capacity at low temperature using liquid nitrogen vaporization. Planetary and Space Science 87, 146–156.
  • 8. Chase M.W. Jr., Davies C.A., Downey J.R., Frurip D.J., McDonald R.A., Suverud A.N., 1985 – JANAF Thermochemical Tables. 3rd ed., Journal of Physical and Chemical Reference Data 14, Supplement 1, 1194.
  • 9. Evans H.T., 1970 – Lunar troilite: Crystalography. Science 167, 621–623.
  • 10. Ghosh A., Mc Sween H.Y., 1999 – Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics and Planetary Science 34, 121–127.
  • 11. Haraldsen H., 1941 – Über die Hochtemperaturumwandlungen der Eisen(II)-Sulfidmischkristalle. Zeitschrift für anorganische und allgemeine Chemie 246, 195–226.
  • 12. Hägg G., Sucksdorff I., 1933 – Die Kristallstruktur von Troilit und Magnetkies. Zeitschrift für Physikalische Chemie 2, 444–452.
  • 13. Henke S., Gail H.P., Trieloff M., Schwarz W.H., Kleine T., 2012 – Thermal evolution and sintering of chondritic planetesimals. Astronomy and Astrophysics 537, A45, 19 p.
  • 14. Horwood J.L., Townsend M.G., Webster A.H., 1976 – Magnetic susceptibility of single-crystal Fe1-xS. Journal of Solid State Chemistry 17, 35–42.
  • 15. Howard V.L., Gooding J.L., 1996 – Troilite cosmothermometer: Application to L-chondrites. Lunar and Planetary Science XXVII, 731.
  • 16. Höhne G.W.H., Hemminger W., Flammersheim H.J., 1996 – Differential Scanning Calorimetry. An Introduction for Practitioners. Springer, Berlin.
  • 17. Hutchison R., 2006 – Meteorites a petrologic, chemical and isotopic synthesis. Cambridge University Press, New York.
  • 18. Karwowski Ł., 2012 – Sołtmany meteorite. Meteorites 2, 15–30.
  • 19. King H.E., Prewitt C.T., 1982 – High pressure and high temperature polymorphism of iron sulfide (FeS). Acta Crystallographica B 38, 1877–1887.
  • 20. Kruse O., 1992 – Phase transitions and kinetics in natural FeS measured by X-ray diffraction and Mössebauer spectroscopy at elevated temperatures. American Mineralogist 77, 391–398.
  • 21. Kruse O., Ericsson T., 1988 – A Mössebauer investigation of natural troilite from the Agpalilik meteorite, Physics and Chemistry of Minerals 15, 509–513.
  • 22. Lang K.R., 2011 – The Cambrigde Guide to the Solar System. Part IV: Remants of creation: small worlds in the solar system, chapter 12: Asteroids and meteorites, Cambridge University Press, UK, second edition, 374.
  • 23. Lauer H.V. Jr., Gooding J.L., 1996 – Troilite cosmothermometer: application to L-chondrites. XXVII Lunar and Planetary Science Conference, 731–732.
  • 24. Łuszczek K., 2012 – Chemical composition of L chondrites group and potential natural resources of their parent bodies. In: Drzymała J., Ciężkowski W. [eds.] – Interdyscyplinarne zagadnienia w górnictwie i geologii 3, Wrocław, 161–173.
  • 25. Matsui T., Osako M., 1979 – Thermal property measurement of Yamato meteorites. Memoirs of National Institute of Polar Research Special Issue 15, 243–252.
  • 26. McSween H.Y., Huss G.R., 2010 – Cosmochemistry. Cambrigde University Press, Cambridge.
  • 27. Moldenhauer W., Brückner W., 1976 – Physical properties of nonstoichiometric iron sulfide Fe1-xS near the α-phase transition. Physica Status Solidi A 34, 565–571.
  • 28. Opeil C.P., Consolmagno G.J., Safarik D.J., Britt D.T., 2011 – Stony meteorite thermal properties and their relationship with meteorite chemical and physical states.Meteoritics & Planetary Science 47 (3), 319–329.
  • 29. Ozawa K., Anzai S., 1966 – Effect of pressure on the α-transition point of iron monosulphide. Physica Status Solidi 17, 697–700.
  • 30. Sears D.W., 1975 – Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology 5, 155–164.
  • 31. Sears D.W.G., 2004 – The orgin of chondrules and chondrites. Cambridge University Press, Cambrigde.
  • 32. Szurgot M., 2003 – Thermophysical properties of meteorites, Specific heat capacity. 2nd Meteorite Seminar in Olsztyn, 136–145 (in Polish).
  • 33. Szurgot M., 2011a – On the specific heat capacity and thermal capacity of meteorites. 42nd Lunar and Planetary Science Conference, Abstract #1150.pdf.
  • 34. Szurgot M., 2011b – Thermal conductivity of meteorites. Meteoritics & Planetary Science 46, Supplement, A230.
  • 35. Szurgot M., 2012a – On the heat capacity of asteroids, satellites and terrestrial planets. 43rd Lunar and Planetary Science Conference. Abstract #2626.pdf.
  • 36. Szurgot M., 2012b – Mean specific heat capacity of Mars, moons and asteroids. 75th Annual Meteoritical Society Meeting. Abstract #5035.pdf.
  • 37. Szurgot M., 2012c – Thermal capacity of Mars, Martian crust, mantle and core. 75th Annual Meteoritical Society Meeting. Abstract #5094.pdf.
  • 38. Szurgot M., 2012d – Heat capacity of Mars. Workshop on the Mantle of Mars. Abstract #6001.pdf.
  • 39. Szurgot M., 2014 – Modal abundance of minerals in Sołtmany L6 chondrite. Meteoritics & Planetary Science 49, Supplement, #5031.pdf.
  • 40. Szurgot M., Polański K., 2011 – Investigations of HaH 286 eucrite by analytical electron microscopy. Meteorites 1, 29–38.
  • 41. Szurgot M., Wojtatowicz T.W., 2011 – Thermal diffusivity of meteorites. Meteoritics & Planetary Science 46, Supplement, A230.
  • 42. Szurgot M., Rożniakowski K., Wojtatowicz T.W., Polański K., 2008 – Investigation of microstructure and thermophysical properties of Morasko iron meteorites. Crystal Research and Technology 43, 921–930.
  • 43. Szurgot M., Wach R.A., Przylibski T.A., 2012 – Thermophysical properties of Sołtmany meteorite, Meteorites 2, 53–65.
  • 44. Szurgot M., Wach R.A., Bartoschewitz R., 2014 – Thermophysical properties of Braunschweig meteorite. Meteoritics & Planetary Science 49, Supplement, #5015.pdf.
  • 45. Töpel-Schadt J., Müller W.F., 1982 – Transmission electron microscopy on meteorite troilite. Physics and Chemistry of Minerals 8, 175–179.
  • 46. Vaz J.E., 1971 – Lost City meteorite: Determination of the temperature grandient induced by atmospheric friction using thermoluminescence. Meteoritics 6 (3), 207–216.
  • 47. Vaz J.E., 1972 – Ucera meteorite: Determination of differential atmospheric heating using its natural thermoluminescence. Meteoritics 7 (2), 77–86.
  • 48. Velbel M.A., 2014 – Terrestrial weathering of ordinary chondrites in nature and continuing during laboratory storage and processing: Review and implications for Hayabusa sample integrity. Meteoritics & Planetary Science 49 (2), 154–171.
  • 49. Wach R.A., Adamus A., Szurgot M., 2013 – Specific heat capacity of Sołtmany and NWA 4560 meteorites. Meteoritics & Planetary Science 48, Supplement, #5017.pdf.
  • 50. Waples D.W., Waples J.S., 2004 – A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks. Natural Resources Research 13 (2), 97–122.
  • 51. Yomogida K., Matsui T., 1981 – Physical properties of some Antarctic meteorites. Memories of the National Institute of Polar Research., Special Issue 20, 384–394.
  • 52. Yomogida K., Matsui T., 1983 – Physical properties of ordinary chondrites. Journal of Geophysical Research 88, 9513–9533.
  • 53. www.lpi.usra.edu, 7.04.2014.
  • 54. www.mindat.org, 7.04.2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5f3df2f-2832-4167-bc21-1801cbd90f14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.