PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Spatio-Temporal Eeg Structures For Application In Technology Brain-Computer Interfaces (Bci)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Brain-computer interfaces (BCIs) enable direct communication between the brain and information technologies, translating brain activity recorded intracranially into commands. Recent advances in BCIs have utilised multimodal approaches, such as electroencephalography (EEG)-based systems in combination with other biosignals, as well as deep learning to improve the efficiency and reliability of such technologies. Due to the inherent uncertainty of the data of electroencephalogram (EEG) patterns, traditional EEG diagnostic methods often face difficulties. Specifically, in multiple neurological disorders, the main motivation is to overcome the limitations of existing methods that are unable to cope with the complex and overlapping nature of EEG signals. In this paper, the use of Karhunen-Loève decomposition functions for the analysis of spatiotemporal EEG signals in a state of calm mental load in healthy persons and patients with nervous disorders is considered. Approaches in the time, frequency, and time-frequency domains are considered. The results in this study show the relationship between EEG modulation during a cognitive task involving healthy people of the control group and the pathological mental state of patients, according to the results of Karhunen-Loève decomposition in pre-selected EEG frequency ranges. The results given in this paper improve the quality and speed of recognising emotional states of patients with emotional expression disorders from the EEG signal, and also develop brain-computer interface (BCI) technologies, including for the application of artificial intelligence.
Wydawca
Rocznik
Tom
Strony
486--493
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Medical Institute, Sumy State University, 59, Petropavlivska Street, Sumy, 40014, Ukraine
  • Medical Institute Sumy State University 59, Petropavlivska Street, 40014 Sumy, Ukraine
  • Department of Design Information Technologies and Design Odesa Polytechnic National University Shevchenka Ave, 1, 65044 Odesa, Ukraine
autor
  • Technical University of Košice Faculty of Manufacturing Technologies with a seat in Prešov Bayerova 1, 080 01 Prešov, Slovak Republic
Bibliografia
  • [1] N. Hu, J.X. Shi, C. Chen, et al. “Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury.” Nat Commun., vol. 15, 9580, 2024.
  • [2] H. Yadav and S. Maini. “Electroencephalogram based brain-computer interface: Applications, challenges, and opportunities.” Multimed Tools Appl., vol. 82, pp. 47003-47047, 2023.
  • [3] D.M. Lyreskog, H. Zohny, S.P. Mann, et al. “Decentralising the Self – Ethical Considerations in Utilizing Decentralised Web Technology for Direct Brain Interfaces.” Sci Eng Eth-ics, vol. 30, no. 28, 2024.
  • [4] D. Vignesh, S. He and S. Banerjee. “A review on the com-plexities of brain activity: insights from nonlinear dynamics in neuroscience.” Nonlinear Dyn., vol. 113, pp. 4531-4552, 2025.
  • [5] X. Tang, H. Shen, S. Zhao, et al. “Flexible brain-computer interfaces.” Nat Electron., vol. 6, pp. 109-118, 2023.
  • [6] K.M. Patrick-Krueger, I. Burkhart and J.L. Contreras-Vidal. “The state of clinical trials of implantable brain-computer interfaces.” Nat Rev Bioeng., vol. 3, pp. 50-67, 2025.
  • [7] T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
  • [8] Z. Zhang, Y. Chen, X. Zhao, et al. “A review of ethical con-siderations for the medical applications of brain-computer interfaces.” Cogn Neurodyn, vol. 18, pp. 3603-3614, 2024.
  • [9] “ISO/IEC TR 27599:2025 Information technology – Brain-computer interfaces – Use cases.” Available from: https://www.iso.org/standard/80419.html
  • [10] B. Zhang, D. Wei, G. Yan, et al. “Spatial-Temporal EEG Fu-sion Based on Neural Network for Major Depressive Disor-der Detection.” Interdiscip Sci Comput Life Sci, vol. 15, pp. 542-559, 2023.
  • [11] Z. Huang, C. Jowers, D. Kent, D., et al. “The implementation of Industry 4.0 in manufacturing: from lean manufacturing to product design.” Int J Adv Manuf Technol, vol. 121, pp. 3351-3367, 2022.
  • [12] T. Garbe. “The Presentation of Brain-computer Interfaces As Autonomy-enhancing Therapy Products.” Nanoethics, vol. 18, no. 13, 2024.
  • [13] X. Sun and B. Ye. “The functional differentiation of brain-computer interfaces (BCIs) and its ethical implications.” Humanit Soc Sci Commun, vol. 10, 878, 2023.
  • [14] G. Wang, G. Marcucci, B. Peters, et al. “Human-centred physical neuromorphics with visual brain-computer inter-faces.” Nat Commun, vol. 15, 6393, 2024.
  • [15] B. Maiseli, A.T. Abdalla, L.V. Massawe, et al. “Brain-com-puter interface: trend, challenges, and threats.” Brain Inf, vol. 10, no. 20, 2023.
  • [16] N.D. Schiff, M. Diringer, K. Diserens, et al. “Brain-Computer Interfaces for Communication in Patients with Disorders of Consciousness: A Gap Analysis and Scientific Roadmap.” Neurocrit Care, vol. 41, pp. 129-145, 2024.
  • [17] X. Jiang, L. Meng, S. Li, et al. “Active poisoning: efficient backdoor attacks on transfer learning-based brain-com-puter interfaces.” Sci. China Inf. Sci., vol. 66, 182402, 2023. [18] C. Poppe and B.S. Elger. “Brain-Computer Interfaces, Com-pletely Locked-In State in Neurodegenerative Diseases, and End-of-Life Decisions.” Bioethical Inquiry, vol. 21, pp. 19-27, 2024.
  • [19] K. Erat, E.B. Şahin, F. Doğan, et al. “Emotion recognition with EEG-based brain-computer interfaces: a systematic literature review.” Multimed Tools Appl, vol. 83, pp. 79647-79694, 2024.
  • [20] Z. Yan, P. Liu, H. Zhou, H., et al. “Brain-computer Interac-tion in the Smart Era.” Curr Med Sci, vol. 44, pp. 1123-1131, 2024.
  • [21] J.I. Buitenweg, J.M. Murre and K.R. Ridderinkhof. “Brain training in progress: A review of trainability in healthy sen-iors.” Front. Hum. Neurosci, vol. 6, 183, 2012. [22] H.K. Hausman, et al. “The role of resting-state network functional connectivity in cognitive aging.” Front Aging Neurosci, vol. 12, 177, 2020.
  • [23] A. Rouzitalab, C.B. Boulay, J. Park, et al. “Intracortical brain-computer interfaces in primates: a review and out-look.” Biomed. Eng Lett, vol. 13, pp. 375-390, 2023.
  • [24] R. Sharma and H.K. Meena. “Emerging Trends in EEG Signal Processing: A Systematic Review.” SN Comput Sci, vol. 5, 415, 2024.
  • [25] S. Jain and R. Srivastava. “Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.” Brain Topogr, vol. 38, 33, 2025.
  • [26] E. Canny, M.J. Vansteensel, S.M.A. van der Salm, et al. “Boosting brain-computer interfaces with functional elec-trical stimulation: potential applications in people with locked-in syndrome.” J Neuro Engineering Rehabil, vol. 20, 157, 2023.
  • [27] Q. He, J. He, Y. Yang, et al. “Brain-Computer Interfaces in Disorders of Consciousness.” Neurosci Bull, vol. 39, pp. 348-352, 2023.
  • [28] R. Pillalamarri and U. Shanmugam. “A review on EEG-based multimodal learning for emotion recognition.” Artif Intell Rev, vol. 58, 131, 2025.
  • [29] S. Shang, Y. Shi, Y. Zhang, et al. “Artificial intelligence for brain disease diagnosis using electroencephalogram sig-nals.” J Zhejiang Univ Sci B, vol. 25, pp. 914-940, 2024.
  • [30] Y. Wang, S. Liu, H. Wang, et al. “Neuron devices: emerging prospects in neural interfaces and recognition.” Microsyst Nanoeng, vol. 8, 128, 2022.
  • [31] Y.J. Zhang, Z.F. Yu, J.K. Liu, et al. “Neural Decoding of Visual Information Across Different Neural Recording Modalities and Approaches.” Mach Intell Res, vol. 19, pp. 350-365, 2022.
  • [32] K.C. Davis, B. Meschede-Krasa, I. Cajigas, et al. “Design-de-velopment of an at-home modular brain-computer
  • interface (BCI) platform in a case study of cervical spinal cord injury.” J NeuroEngineering Rehabil, vol. 19, 53, 2022.
  • [33] S.S. Joudar, A.S. Albahri, R.A. Hamid, et al. “Artificial intel-ligence-based approaches for improving the diagnosis, tri-age, and prioritization of autism spectrum disorder: a sys-tematic review of current trends and open issues.” Artif In-tell Rev, vol. 56, Suppl. 1, pp. 53-117, 2023.
  • [34] Y. Xing, Y. Yang, K. Yang, et al. “Intelligent sensing devices and systems for personalized mental health.” Med-X, vol. 3, 10, 2025.
  • [35] N.F. Ramsey and M.J. Vansteensel. “The expanding reper-toire of brain-computer interfaces.” Nat Med, vol. 31, pp. 31-32, 2025.
  • [36] G. Sala and F. Gobet. “Cognitive training does not enhance general cognition.” Trends Cogn Sci, vol. 23, no. 1, pp. 9-20, 2019.
  • [37] L. Nguyen, K. Murphy and G. Andrews. “Cognitive and neu-ral plasticity in old age: A systematic review of evidence from executive functions cognitive training.” Ageing Res Rev, vol. 53, 100912, 2019.
  • [38] W. Weng, et al. “The transfer effects of cognitive training on working memory among Chinese older adults with mild cognitive impairment: A randomized controlled trial.” Front Hum Neurosci, vol. 11, 212, 2019.
  • [39] L. Nguyen, K. Murphy and G. Andrews. “Immediate and long-term efficacy of executive functions cognitive training in older adults: A systematic review and meta-analysis.” Psychol Bull, vol. 145, no. 7, pp. 698-733, 2019.
  • [40] G. Sala, et al. “Near and far transfer in cognitive training: A second-order meta-analysis.” Collabra Psychol, vol. 5, no. 1, 2019.
  • [41] J. Rogala, E. Kublik, R. Krauz and A. Wróbel. “Resting-state EEG activity predicts frontoparietal network reconfigura-tion and improved attentional performance.” Sci Rep, vol. 10, 5064, 2020.
  • [42] O.Y. Chén, et al. “Resting-state brain information flow pre-dicts cognitive flexibility in humans.” Sci Rep, vol. 9, 3879, 2019. [43] H. Haken. Principles of Brain Functioning: A Synergetic Ap-proach to Brain Activity, Behavior and Cognition. New York: Springer, vol. 67, 1996.
  • [44] V. Zaloga, K. Dyadyura, I. Rybalka, I., et al. “Enhancing effi-ciency by implementation of integrated management sys-tem in order to align organisational culture and daily prac-tice.” Management Systems in Production Engineering, vol. 28, no. 4, pp. 304-311, 2020. [45] D. Chen, Z. Zhao, J. Shi, J. et al. Harnessing the sensing and stimulation function of deep brain-machine interfaces: a new dawn for overcoming substance use disorders. Transl Psychiatry, vol. 14, 440, 2024.
  • [46] L. Sukhodub, A. Panda, K. Dyadyura, et al. “The design cri-teria for biodegradable magnesium alloy implants.” MM Science Journal, pp. 2673-2679, 2018. DOI 10.17973/MMSJ.2018_12_201867.
  • [47] A. Panda, V.M. Anisimov, V.V. Anisimov, et al. “Increasing of wear resistance of linear block-polyurethanes by ther-mal processing methods.” MM Science Journal, vol. 21, pp. 4731-4735, 2021. http://doi.org/10.17973/MMSJ.2021_10_2021018.
  • [48] I. Pandová, M. Rimár, A. Panda, et al. “A study of using nat-ural sorbent to reduce iron cations from aqueous solu-tions.” Int J Environ Res and Pub Health, vol. 17, 2020. https://doi.org/10.3390/ijerph17103686.
  • [49] M. Harničárová, J. Valíček, M. Kušnerová, et al. “Study of the influence of the structural grain size on the mechanical properties of technical materials.” Materialwissenschaft und Werkstofftechnik, vol. 5, 2019. https://doi.org/10.1002/mawe.201800177.
  • [50] L. Sukhodub, A. Panda, L. Sukhodub, et al. “Hydroxyapatite and zinc oxide based two-layer coating, deposited on Ti6Al4V substrate.” MM Science Journal, pp. 3494-3499, 2019. DOI: 10.17973/MMSJ.2019_12_2019030
  • [51] A. Panda, K. Dyadyura, J. Valíček, et al. “Ecotoxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications.” Polymers, 2022, 14, 3275. https://doi.org/10.3390/polym14163275.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5f1a679-a7ec-46fc-9c87-fd41f66f13b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.