Identyfikatory
Warianty tytułu
Mechanizm natychmiastowego przeskoku napięciowego na powierzchni izolatora kompozytowego o nierównomiernej zwilżalności i zabrudzeniu
Języki publikacji
Abstrakty
This paper presents the mechanism of a sudden flashover along composite insulator surface with non-uniformly distributed wettability and pollution. Parameters of the model have been determined on the basis of typical composite insulator pollution characteristics in a condition of low or high surface wettability. It has been found that surface strength of composite insulator with non-uniformly distributed wettability and pollution depends mainly on a part of its creepage distance (of low wettability) – around 25% of insulator’s overall creepage distance.
W artykule przedstawiono mechanizm natychmiastowego przeskoku napięciowego po powierzchni izolatora kompozytowego o nierównomiernej zwilżalności i nierównomiernym zabrudzeniu. Parametry modelu określono na podstawie typowych charakterystyk zabrudzeniowych izolatora kompozytowego w stanie niskiej lub wysokiej zwilżalności. Stwierdzono, że wytrzymałość powierzchniowa izolatora kompozytowego zależy głównie od części jego drogi upływu (około 25% całkowitej długości) wzdłuż powierzchni o niskiej zwilżalności.
Wydawca
Czasopismo
Rocznik
Tom
Strony
240--246
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
Bibliografia
- [1] Karady G.G., Shah M., Brown R.L., Flashover mechanism of silicone rubber insulators used for outdoor insulation. Part I and II. IEEE Trans. on Power Delivery, Vol. 10, no. 4, pp. 1965– 1971 and 1972-1978, 1995.
- [2] Wańkowicz J., Fleszyński J., Gubański S., Pohl Z., Stankiewicz J., Winkler I., Experience with application of polymeric materials to outdoor high-voltage insulators in Poland. CIGRE 1998, ref. no. 15-301.
- [3] IEC/TS 60815-3:2008, Selection and dimensioning of highvoltage insulators intended for use in polluted conditions – Part 3: Polymer insulators for ac. systems.
- [4] Wańkowicz J.G., Gubański S.M., Wettability and thermally stimulated depolarisation current spectra of naturally aged silicone rubber insulators. Europ. Trans. on Electric. Pow., Vol. 5, no. 1, 1995, pp. 41–48.
- [5] Gorur R.S., Cherney E.A., Burnham J.T., Outdoor insulators, R.S. Gorur, Inc Phoenix, Arizona 85044, USA 1999.
- [6] Gubański S.M., Wańkowicz J.G., Distribution of natural pollution surface layers on silicone rubber insulators and their UV absorption, IEEE Trans. on Electric. Insul., Vol. 24, no.4 , 1989, pp. 689-697.
- [7] Chrzan K., Leakage currents on naturally contaminated porcelain and silicone insulators. IEEE Trans. on Power Delivery, Vol. 25, no. 2, 2010, pp. 904 – 910.
- [8] Zhao S., Irang X., Zhang Z., Hu I., Shu L., Flashover voltage prediction of composite insulators based on the characteristics of leakage current, IEEE Trans. on Power Delivery, Vol. 28, no. 3, 2013, pp. 1699 – 1708.
- [9] Gorur R. S., de la O A., El-Kishky H., Chowdhary M., Mukherjee H., Sundaram R., Burnham I.T., Sudden flashover of non ceramic insulators in artificial contamination tests, IEEE Trans. on D and EI, Vol. 4, no.1, 1997, pp. 79-87.
- [10] Berndt L., Bewertung des Verschmutzungsgrades von Isolatoren, Ph. D. thesis, TH Zittau, 1985.
- [11] Wańkowicz J.G., Berndt L., Einfluss von Schichtungleichmäβigkeiten auf die Fremdschichtűberschlagspannung von Isolatoren, Elektrie 46 (1992) 11, pp. 460-464.
- [12] Boudissa R., Haddad A., Sahli Z., Mekhaldi A., Baersch R., Performance of outdoor insulators under non-uniform pollution conditions, XIVth International Symposium on High Voltage Engineering, China, August 2005, D-51.
- [13] Streubel H., The influence of non uniform contamination on the flashover voltage of insulators, IV ISH, Athens 1983, paper no. 46.10.
- [14] Pilling J., Berndt L., Flashover voltage and flashover current of polluted insulators, VII ISH, Dresden 1991, paper no. 43.12.
- [15] Wańkowicz J., Application of the Obenaus model to determination of flashover voltage of group-nonuniformly polluted insulator (in Polish), Archiwum Elektrotechniki, Vol. XLIII, no.1, 1994, pp. 71-86.
- [16] Rizk F.A.M., Mathematical models for pollution flashover, Electra, no. 78, 1981, pp. 71 – 103.
- [17] Obenaus F., Die Űberschlagspannung verschmutzer Isolatoren, Elektrot. Ztschr. Bd 56, H. 13, 1935, pp. 369 – 372.
- [18] Obenaus F., Fremdschichtűberschlag und Kriechweglänge, Deut. Elektrot. Bol. 12, H. 4, 1958, pp. 135-136.
- [19] Neumärker G., Verschmutzungszustand und Kriechweg, Mon. Deut. Akad. Wiss, H. 1, Berlin 1959, pp. 352 – 359.
- [20] Wańkowicz J., Pollution flashover. Selected service and material-constructional problems of insulators for high voltages. (in Polish), Monograph 11, Oficyna Wydawnicza Polit. Wrocł., Wrocław 1995.
- [21] Büchner H., Schmuck F., A. Zanetti, Kunststoffisolatoren als Alternative, Bulletin SEV/VSE 7/1997, pp. 25 – 33.
- [22] de la O A., Gorur R.S., Chang J.W., AC Clean fog tests on non ceramic insulating materials and a comparison with porcelain, IEEE Trans. on Power Delivery, Vol. 9, no. 4, 1994, pp. 1994.
- [23] de la O A., Gorur R.S., Burnham J.T., Electrical performance of non ceramic insulators in artificial contamination test: Role of resting time. IEEE Trans. on D. and EI., Vol. 3, 1996, pp. 827 – 835.
- [24] Skopec A., Wańkowicz J.G., Sikorski B., Electric field calculation for an axially-symmetric insulator with surface contamination, IEEE trans. on D. and EI, Vol. 1, no. 2, 1994, pp. 332- 338.
- [25] Maikopar A.S., The open small current arc (in Russian), Elektrichestvo, no. 2, 1965, pp. 22 – 25.
- [26] Cervinka R., Bärsch R., Exl F., Kindersberger J., Winter H.J., Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem Dynamischen Tropfen-Prüfverfahren. ETG-Fachbericht, VDE-Verlag, Berlin 2008, pp. 55 – 62.
- [27] CIGRE publication no.555: Artificial Pollution Test for Polymer Insulators. Results of Round Robin Test. October 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5ee3bed-4fd0-4bd4-bc94-ef0748980a73