PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Orange Peels as a Sustainable Material for Treating Water Polluted with Antimony

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water pollution has increased due to human activities; consequently, it is essential to treat both surface water and ground water so they are suitable to meet the needs of the population. This study will discuss water treatment intended to remove antimony. Antimony (Sb) is classed as a high-priority toxic pollutant because of its adverse effects on ecosystems and human health. There are several methods for removing antimony from water, including adsorption, coagulation, ion exchange, and electrochemical treatment. This study focuses on the adsorption method as researchers have, in recent times, been seeking adsorbents that are environmentally friendly and cost-effective and that do not leave a residue. The study investigates the use of orange peels treated with acetic acid as an adsorbent to remove antimony ions from a simulated aqueous solution. The results revealed that 5 g of treated orange peels is 98.5% effective at treating water at a pH of 6, for a contact time of 150 minutes, at a mixing speed of 450 rpm.
Rocznik
Strony
25--35
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab Al Muadham, Baghdad 10047, Iraq
  • Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab Al Muadham, Baghdad 10047, Iraq
  • Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab Al Muadham, Baghdad 10047, Iraq
Bibliografia
  • 1. Abbas M. N. 2015. Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 55(4), 970–977.
  • 2. Abbas M. N., Abbas F. S. 2014. Application of Rice Husk to Remove Humic Acid from Aqueous Solutions and Profiting from Waste Leftover. WSEAS Transactions on Biology and Biomedicine, 11(9), 62–69.
  • 3. Abbas M. N., Alalwan H. A. 2019. Catalytic Oxidative and Adsorptive Desulfurization of Heavy Naphtha Fraction. Korean Journal of Chemical Engineering, 12(2), 283–288. DOI: 10.9713/kcer.2019.57.2.283.
  • 4. Abbas M. N., Al-Hermizy S. M., Abudi Z. N., Ibrahim T. A. 2019a. Phenol Biosorption from Polluted Aqueous Solutions by Ulva lactuca Alga using Batch Mode Unit. Journal of Ecological Engineering, 20(6), 225–235.
  • 5. Abbas M. N., Al-Madhhachi A. T., Esmael S. A. 2019b. Quantifying soil erodibility parameters due to wastewater chemicals. Int. J. Hydrology Science and Technology, 9(5), 550–568.
  • 6. Abbas M. N., Ibrahim S. A. 2020. Catalytic and thermal desulfurization of light naphtha fraction. Journal of King Saud University–Engineering Sciences, 32(4), 229–235.
  • 7. Abbas M. N., Nussrat T. H. 2020. Statistical Analysis of Experimental Data for Adsorption Process of Cadmium by Watermelon Rinds in Continuous Packed Bed Column. International Journal of Innovation, Creativity and Change, 13(3), 124–138.
  • 8. Alalwan H. A., Abbas M. N., Abudi Z. N., Alminshid A. H. 2018. Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Environmental Technology and Innovation, 12, 1–13.
  • 9. Ali G. A. A., Ibrahim S. A., Abbas M. N. 2020. Catalytic Adsorptive of Nickel Metal from Iraqi Crude Oil using non-Conventional Catalysts. Innovative Infrastructure Solutions, 6(7), 9.
  • 10. Al-Madhhachi A. T., Mutter G. M., Hasan M. B. 2019. Predicting Mechanistic Detachment Model due to Lead-Contaminated Soil Treated with Iraqi Stabilizers. KSCE Journal of Civil Engineering, 23(7), 2898–2907.
  • 11. Al-Tameemi I. M., Hasan M. B., Al-Mussawy H. A., Al-Madhhachi A. T. 2020. Groundwater Quality Assessment Using Water Quality Index Technique: A Case Study of Kirkuk Governorate, Iraq. In IOP Conference Series: Materials Science and Engineering, 881(1), 012185.
  • 12. Bolisetty S., Peydayesh M., Mezzenga R. 2019. Sustainable Technologies for Water Purification from Heavy Metals: Review and Analysis, Chemical Society Reviews, 48(2), 463–87.
  • 13. Brinza L., Geraki K., Cojocaru C., Holdt S. L., Neamtu M. 2020. Baltic Fucus Vesiculosus as Potential Bio-Sorbent for Zn Removal: Mechanism Insight, Chemosphere, 238, 124652.
  • 14. Deng R. J., Jin C. S., Ren B. Z., Hou B. L., Hursthouse A. S. 2017. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents, Water (Switzerland), 9 (10).
  • 15. Fan H., Sun Y., Tang Q., Li W., Sun T. 2014. Selective Adsorption of Antimony (III) from Aqueous Solution by Ion-Imprinted Organic–Inorganic Hybrid Sorbent: Kinetics, Isotherms and Thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2640–2648.
  • 16. Fan Y., Zheng C., Huo A., Wang Q., Shen Z., Xue Z., He C. 2019. Ecotoxicology and Environmental Safety Investigating the Binding Properties between Antimony (V) and Dissolved Organic Matter (DOM) under Different pH Conditions during the Soil Sorption Process Using Fluorescence and FTIR Spectroscopy. Ecotoxicology and Environmental Safety, 181, 34–42.
  • 17. Feng N., Guo X., Liang S. 2009. Adsorption study of copper (II) by chemically modified orange peel. Journal of Hazardous Materials, 164(2–3), 1286–1292.
  • 18. Ghulam N. A., Abbas M. N., Sachit D. E. 201. Preparation of synthetic alumina from aluminium foil waste and investigation of its performance in the removal of RG-19 dye from its aqueous solution. Indian Chemical Engineer, 62(3), 301–313.
  • 19. Gupta V. K., Nayak A. 2012. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 180(15), 81–90.
  • 20. Hasan M. B., Al-Tameemi, I. M. 2018. Carbofuran Elimination from Synthetic Wastewater Employing AOPS. International Journal of Civil Engineering and Technology, 9(10), 491–99.
  • 21. Hasan M. B., Al-Madhhachi A. T. 2018. The influence of crude oil on mechanistic detachment rate parameters. Geosciences, 8(9), 332.
  • 22. Hasanzadeh M., Simchi A., Far H. S. 2020. Nanoporous Composites of Activated Carbon-Metal Organic Frameworks for Organic Dye Adsorption: Synthesis, Adsorption Mechanism and Kinetics Studies. Journal of Industrial and Engineering Chemistry, 81, 405–14.
  • 23. He X., Li P. 2020. Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr 6+): Occurrence, Sources and Health Risks. Exposure and Health, 1–17.
  • 24. Hsieh L. C., Ou H., Huang C. 2019. Adsorption of Cu (II) in Aqueous Solution Using MicrowaveAssisted Titanate Nanotubes. Applied Nanoscience, 9 (4), 505–14.
  • 25. Huitzil-Tepanecatl A., Cocoletzi G. H., Takeuchi N. 2010. Ab Initio Study of the Adsorption of Antimony and Arsenic on the Si(110) Surface. Thin Solid Films, 519 (1), 265–69.
  • 26. Kumar V., Parihar R. D., Sharma A., Bakshi P., Sidhu G. S., Bali A. S., Karaouzas I., Bhardwaj R., Thukral A. K., Gyasi-Agyei Y. 2019. Global Evaluation of Heavy Metal Content in Surface Water Bodies: A Meta-Analysis Using Heavy Metal Pollution Indices and Multivariate Statistical Analyses. Chemosphere, 124364.
  • 27. Liang S., Guo X., Feng N., Tian Q. 2010. Effective removal of heavy metals from aqueous solutions by orange peel xanthate. Transactions of Nonferrous Metals Society of China, 20(1), 187–191.
  • 28. Long X., Wang X., Guo X., He M. 2019. A Review of Removal Technology for Antimony in Aqueous Solution. Journal of Environmental Sciences, 90, 1–16.
  • 29. Maddodi S. A., Alalwan H. A., Alminshid A. H., Abbas M. N. 2020. Isotherm and computational fluid dynamics analysis of nickel ion adsorption from aqueous solution using activated carbon. South African Journal of Chemical Engineering, 32, 5–12.
  • 30. Mantha Z., Tzollas N., Stylianou S., Katsoyiannis I., Zouboulis M., Anastasios M. 2018. Removal of Antimony Species, Sb(III)/Sb(V), from Water by Using Iron Coagulants. Water (Switzerland), 10(10), 1328.
  • 31. Murtadah I., Al-Sharify Z. T., Hasan M. B. 2020. Atmospheric Concentration Saturated and Aromatic Hydrocarbons Around Dura Refinery. In IOP Conference Series: Materials Science and Engineering, 870(1), 012033.
  • 32. Pandiarajan A., Kamaraj R., Vasudevan S., Vasudevan S. 2018. OPAC (orange peel activated carbon) derived from waste orange peel for the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies. Bioresource Technology, 261, 329–341.
  • 33. Saeidnia S., Asadollahfardi G., Darban A. K., Mohseni M. 2016. Simulation of Antimony Adsorption on Nano-Zero Valent Iron and Kaolinite and Analyzing the Influencing Parameters. Water Science and Technology, 73 (10), 2493–2500.
  • 34. Selintung, M., Mangarengi N. A. P., Zubair A. 2020. The Reduction of Heavy Metals Cd and Cr Levels in Wastewater Using Bagasse Charcoal as an Adsorbent. IOP Conference Series: Earth and Environmental Science, 419: 12171.
  • 35. Simeonidis K., Martinez-Boubeta C., Zamora-Pérez P., Rivera-Gil P., Kaprara E., Kokkinos E., Mitrakas M. 2019. Implementing Nanoparticles for Competitive Drinking Water Purification. Environmental Chemistry Letters, 17(2), 705–19.
  • 36. Widmer W., Zhou W., Grohmann K. 2010. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresource Technology, 101, 5242–5249.
  • 37. Xi J., He M., Wang P. 2013. Adsorption of Antimony on Sediments from Typical Water Systems in China: A Comparison of Sb(III) and Sb(V) Pattern. Soil and Sediment Contamination 23(1), 37–48.
  • 38. Xiao G., Wang Y., Xu S., Li P., Yang C., Jin Y., Sun Q., Su H. 2019. Superior Adsorption Performance of Graphitic Carbon Nitride Nanosheets for Both Cationic and Anionic Heavy Metals from Wastewater. Chinese Journal of Chemical Engineering, 27(2), 305–13.
  • 39. Zhang B., Fu Z., Wang J., Zhang L. 2019. Farmers’ Adoption of Water-Saving Irrigation Technology Alleviates Water Scarcity in Metropolis Suburbs: A Case Study of Beijing, China. Agricultural Water Management, 212, 349–357.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5ea4516-0d79-41fd-803f-30d1f18c92e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.