PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on dynamic structure of propeller tip vortex

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Propeller cavitation is a main source of fluctuating pressure and noise induced by propellers, and the tip vortex cavitation is the principal source. The present study measures the flow fields near the blade tip using the 2D-PIV technique. The experimental setup and scheme are introduced. We monitor the process of generation and shedding of the propeller tip vortex in real time and analyse the dynamic structure of the tip vortex by testing the propeller wake field under different phases of the axial plane. The distribution characteristics of radial and axial velocity are also analysed. The influence range and the vorticity of the tip vortex and trailing vortex are obtained. All of the measured quantitative data are useful for future propeller design.
Słowa kluczowe
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Ningbo University Jiangbei, 316000 Ningbo, China
autor
  • Wuhan Rules and Research Institute Aokou, 430070 Wuhan, China
autor
  • Wuhan Rules and Research Institute Aokou, 430070 Wuhan, China
Bibliografia
  • 1. Aktas, B., Atlar, M., Turkmen, S., et al. (2016) Systematic cavitation tunnel tests of a propeller in uniform and inclined flow conditions as part of a round robin test campaign. Ocean Engineering, Vol. 120, 136–151.
  • 2. Baek, D.-G., Yoon, H.-S., Jung, J.-H., et al. (2015) Effect of the advance ratio on the evolution of propeller wake. Computers & Fluids, Vol. 118, 32–43.
  • 3. Cotroni A., Felice F. D., Romano G. P., et al. (2000) Investigation of the near wake of a propeller using particle image velocimetry. Experiments in Fluids, Vol. 2000 (suppl), S227–S236.
  • 4. Dengcheng, L., Weixin, Z. (2016) Numerical predictions of the propeller cavitation behind ship and comparison with experiment. Journal of Ship Mechanics. Vol. 20, No. 3, 233–242.
  • 5. Gaggero, S., Gonzalez-Adalid, J., Perez-Sobrino, M. (2016) Design of contracted and tip loaded propellers by using boundary element methods and optimization algorithms. Applied Ocean Research. Vol. 55, 102–129.
  • 6. Gaggero, S., Tani, G., Viviani, M., et al. (2014) A study on the numerical prediction of propellers cavitating tip vortex. Ocean Engineering, Vol. 92, 137–161.
  • 7. Guoqiang, W., Shitang, D. (2005) Theory and applications of marine propeller. Harbin Engineering University Press, Vol. 5.
  • 8. Guoqiang, W., Xiaolong, L. (2006) Prediction of unsteady performance of ducted propellers by potential based panel method. Journal of Ship Mechanics, Vol. 10, No. 1, 47–51.
  • 9. Jessup, S. D. (1989) An experimental investigation of viscous aspects of propeller blade flow. Ph. D. Thesis, The Catholic University of America.
  • 10. Jijun, P., Ying, X. Scaling effects of propeller sheet cavitation. Journal of Wuhan University of Technology, Vol. 40, No. 4, 705–708.
  • 11. Koyama K. (1993) Comparative calculations of propellers by surface panel method. Workshop Organized by 20th ITTC Propulsor Committee, Ship Research Institute, Supplement, 15.
  • 12. Min, K. S. (1978) Numerical and experimental methods for prediction of field point velocities around propeller blades. MIT Department of Ocean Engineering Report, Vol. 6.
  • 13. Lee, J.-Y., Paik, B.-G., Lee, S. J. (2009) PIV measurements of hull wake behind a container ship model with varying loading condition. Ocean Engineering, Vol. 36, 377–385.
  • 14. Lee S. J., Paik, B.-G., Yoon, J. H., et al. (2004) Threecomponent velocity field measurements of propeller wake using a stereoscopic PIV technique. Experiments in Fluids, Vol. 36, 575–585.
  • 15. Paik, B.-G., Lee, C. M., Lee S. J. (2005) Comparative measurement on flow structure of marine propeller wake between open free surface and closed surface flows. Journal of Marine Science and Technology, Vol. 10(3), 123–130.
  • 16. Pennings P. C., Westerweel J., Van Terwisga T. J. C. (2016) Cavitation tunnel analysis of radiated sound from the resonance of a propeller tip vortex cavity. International Journal of Multiphase Flow, Vol. 83, 1–11.
  • 17. Tani, G., Villa, D., Gaggero, S., et al. (2017) Experimental investigation of pressure pulses and radiated noise for two alternative designs of the propeller of a high-speed craft. Ocean Engineering, Vol. 132, 45–69.
  • 18. Zhengqing, D., Linzhang, L., Weixin, Z. (2006) LDV measurements of inner velocity field of ducted propeller. Journal of Ship Mechanics, Vol. 10, No. 5, 24–31.
  • 19. Zhihui, L., Benlong, W., Xiaoxing, P. et al. (2016) Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear-kε turbulence model. Journal of Hydrodynamics, Vol. 28, 227–237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5ea2c8e-819b-4650-b065-29365806f625
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.