PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust Back-stepping Based Higher Order Sliding Mode Control of Non-Inverted Buck-Boost Converter for a Photovoltaic System

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photovoltaic (PV) system generates renewable energy from sunlight, which has low efficiency due to the variance in nature of temperature and irradiance in a fast changing environment condition. Different researchers have proposed different maximum power point tracking MPPT techniques to improve the efficiency. However, still there are many open issues. Thus, to address this, a non-linear back-stepping-based higher order sliding mode controller (BHOSMC) is proposed to harvest maximum power from PV system. The PV module and load is interfaced by a non-inverted buck-boost converter (NIBBC). A linear interpolation method is used for voltage generation and Lyapunov stability is used to verify the control system equation. MATLAB/Simulink software is used for testing the proposed controller performance. The experimental result verified that the proposed BHOSMC is robust, accurate and fast tracking, faultless and less chattering as compared to perturb and observe (P&O), back-stepping control (BSC) and back-stepping-based sliding mode control under rapidly varying meteorological condition.
Wydawca
Rocznik
Strony
113--127
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Sarhad University of Science and Information Technology, Peshawar, Pakistan
Bibliografia
  • Armghan, H., Ahmad, I., Armghan, A., Khan, S. and Arsalan, M. (2018). Backstepping Based Non-linear Control for Maximum Power Point Tracking in Photovoltaic System. Solar Energy, 159, pp. 134–141.
  • Başoğlu, M. E. and Çakır, B. (2016). Comparisons of MPPT Performances of Isolated and Non-isolated DC–DC Converters by Using a New Approach. Renewable and Sustainable Energy Reviews, 60, pp. 1100–1113.
  • Bellia, H., Youcef, R. and Fatima, M. (2014). A Detailed Modeling of Photovoltaic Module Using MATLAB. NRIAG Journal of Astronomy and Geophysics, 3(1), pp. 53–61.
  • Dincer, F. (2011). The Analysis on Photovoltaic Electricity Generation Status, Potential and Policies of the Leading Countries in Solar Energy. Renewable and Sustainable Energy Reviews, 15(1), pp. 713–720.
  • El Fadil, H. and Giri, F. (2007). Backstepping Based Control of PWM DC-DC Boost Power Converters. IEEE International Symposium on Industrial Electronics, pp. 395–400.
  • Elgendy, M. A., Zahawi, B. and Atkinson, D. J. (2012). Assessment of the Incremental Conductance Maximum Power Point Tracking Algorithm. IEEE Transactions on Sustainable Energy, 4(1), pp. 108–117.
  • Elgendy, M. A., Zahawi, B. and Atkinson, D. J. (2012). Evaluation of Perturb and Observe MPPT Algorithm Implementation Techniques. IET International Conference on Power Electronics, Machines and Drives, pp/ 110–110.
  • Elobaid, L. M., Abdelsalam, A. K. and Zakzouk, E. E. (2015). Artificial Neural Network-based Photovoltaic Maximum Power Point Tracking Techniques: A Survey. IET Renewable Power Generation, 9(8), pp. 1043–1063.
  • Gohar Ali, H, Arbos, R. V., Herrera, J., Tobón, A. and Peláez-Restrepo, J. (2020). Non-Linear Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking. Processes, 8(1), pp. 108.
  • Gohar Ali, H. and Arbos, R. V. (2020). Chattering Free Adaptive Sliding Mode Controller for Photovoltaic Panels with Maximum Power Point Tracking. Energies, 13(21), pp. 5678.
  • Hua, C. and Shen, C. (1998). Comparative Study of Peak Power Tracking Techniques for Solar Storage System. Applied Power Electronics Conference and Exposition, 1998. APEC’98. Conference Proceedings 1998., Thirteenth Annual. 2, pp. 679– 685.
  • Iftikhar, R., Ahmad, I., Arsalan, M., Naz, N., Ali, N. and Armghan, H. (2018). MPPT for Photovoltaic System Using Nonlinear Controller. International Journal of Photoenergy, 2018.
  • Metry, M., Shadmand, M. B., Balog, R. S. and Abu-Rub, H. (2016). MPPT of Photovoltaic Systems Using Sensor Less Current-based Model Predictive Control. IEEE Transactions on Industry Applications, 53(2), pp. 1157–1167.
  • Sera, D., Mathe, L., Kerekes, T., Spataru, S. V. and Teodorescu, R. (2013). On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems. IEEE Journal of Photovoltaics, 3(3), pp. 1070–1078.
  • Smith, J. L. (2009). World Oil: Market or Mayhem?. Journal of Economic Perspectives, 23(3), pp. 145–164.
  • Villalva, M. G., Gazoli, J. R. and Filho, E. R. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5), pp. 1198–1208, doi: 10.1109/TPEL.2009.2013862.
  • Zhang, H. L., Baeyens, J., Degrève, J. and Cacères, G. (2013). Concentrated Solar Power Plants: Review and Design Methodology. Renewable and Sustainable Energy Reviews, 22, pp. 466–481.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5e88e44-ac54-4650-903a-9acf9917d3b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.