Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The increasing demand for renewable energy sources has intensified interest in exploring biomass for bioenergy production. Selection of suitable feedstock is significant for the economic viability and ecological impact. Lignocellulosic biomass, derived from non-food plants materials, has emerged as an attractive substrate with low cost and no competition to food crops. Gleditsia triacanthos offers a promising alternative due to its widespread availability, adaptability to diverse climates and soil conditions, fast growth, and high biomass yield. This study investigates the potential of G. triacanthos biomass as a viable substrate for bioethanol production through a combination of pretreatment method, microbiological hydrolysis, and fermentation processes. The biological pretreatment method to enhance cellulose accessibility was analysed. Fermentation trials were carried out using Saccharomyces cerevisiae to assess ethanol yield. Eleven strains with potential cellulolytic activity to the analysed biomass were isolated. The activity index for these strains ranged from 1.09 to 4.86. Results demonstrated that G. triacanthos biomass using selected strains could be converted to fermentable sugars. The highest amount of distillate (83.7 cm3) was obtained after pretreatment and hydrolysis with the BS5 strain (36.3% v/v). These findings indicate that G. triacanthos biomass is a viable and sustainable resource for second-generation bioethanol production, contributing to the development of renewable energy technologies and the mitigation of fossil fuel dependency.
Wydawca
Czasopismo
Rocznik
Tom
Strony
222--227
Opis fizyczny
Bibliogr. 42 poz., fot., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology, Department of Renewable Energy Engineering, Papieża Pawła VI 1, 71-459, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Landscape Architecture, Słowackiego 17, 71-434, Szczecin, Poland
Bibliografia
- Arce, C. and Kratky, L. (2022) “Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization,” iScience, 25(7), 104610. Available at: https://doi.org/10.1016/j.isci.2022.104610.
- Behera, B.C. et al. (2017) “Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review,” Journal of Genetic Engineering and Biotechnology, 15(1), pp. 197–210. Available at: https://doi.org/10.1016/j.jgeb.2016.12.001.
- Chen, H. et al. (2017) “A review on the pretreatment of lignocellulose for high-value chemicals,” Fuel Processing Technology, 160(1), pp. 196–206. Available at: https://doi.org/10.1016/j.fuproc.2016.12.007.
- Cheng, J. et al. (2015) “High titer and yield ethanol production from undetoxified whole slurry of Douglas-fir forest residue using pH profiling in SPORL,” Biotechnol Biofuels, 8, 22. Available at: https://doi.org/10.1186/s13068-015-0205-3.
- Chundawat, S.P.S. et al. (2011) “Deconstruction of lignocellulosic biomass to fuels and chemicals,” Annual Review of Chemical Biomolecular Engineering, 2, pp. 121–145. Available at: https://doi.org/10.1146/annurev-chembioeng-061010-114205.
- Dahnum, D. et al. (2015) “Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch,” Energy Procedia, 68, pp. 107–116. Available at: https://doi.org/10.1016/j.egypro.2015.03.238.
- Florencio, C., Couri, S. and Farinas, C.S. (2012) “Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains,” Enzyme Research, 2012(1), 793708. Available at: https://doi.org/10.1155/2012/793708.
- Gold, M.A. and Hanover, J.W. (1993) “Honeylocust (Gleditsia triacanthos L.): Multipurpose tree for the temperate zone,” International Tree Crops Journal, 74, pp. 189–207. Available at: https://doi.org/10.1080/01435698.1993.9752919.
- Hawrot-Paw, M. et al. (2021) “Fatty acid profile of microalgal oils as a criterion for selection of the best feedstock for biodiesel production,” Energies, 14(21), 7334. Available at: https://doi.org/10.3390/en14217334.
- Hawrot-Paw, M. and Stańczuk, A. (2022) “From waste biomass to cellulosic ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride,” Sustainability, 15(1), 168. Available at: https://doi.org/10.3390/su15010168.
- Hernadez-Beltran, J.U. et al. (2019) “Insight into pretreatment methods of lignocellulosic biomass to increase biogas yield: Current state, challenges, and opportunities,” Applied Sciences, 9(18), 3721. Available at: https://doi.org/10.3390/app9183721.
- Holechek, J.L. et al. (2022) “Global assessment: Can renewable energy replace fossil fuels by 2050?,” Sustainability, 14, 4792. Available at: https://doi.org/10.3390/su14084792.
- Ibañez, C.M., Romero, M. and Camargo, A. (2022) “Chemical and anatomical study of Gleditsia triacanthos to identify opportunities for wood and non-wood uses,” Environmental Sciences Proceedings, 13(1), 9. Available at: https://doi.org/10.3390/IECF2021-10814.
- Irfan, M., Nadeem, M. and Syed, Q. (2014) “Ethanol production from agricultural wastes using Sacchromyces cervisae,” Brazilian Journal of Microbiology, 45(2), pp. 457–465. Available at: https://doi.org/10.1590/S1517-83822014000200012.
- Jones, J.A.D. et al. (2018) “Temperature and pH effect on glucose production from pretreated bagasse by a novel species of Citrobacter and other bacteria,” Heliyon, 4(6), 00657. Available at: https://doi.org/10.1016/j.heliyon.2018.e00657.
- Jönsson, L.J., Alriksson, B. and Nilvebrant, N.-O. (2013) “Bioconversion of lignocellulose: inhibitors and detoxification,” Biotechnology for Biofuels, 6, 16. Available at: https://doi.org/10.1186/1754-6834-6-16.
- Khater, E.-S.G. et al. (2024) “Improvement of the production of bio-oil and biodiesel from Egyptian Jatropha seeds by using microwave and ultrasonic,” Scientific Reports, 14, 1882. Available at: https://doi.org/10.1038/s41598-024-51579-6.
- Kim, H.G. et al. (2014) “Bioethanol production by enzymatic saccharification of Salix viminalis var. gigantea biomass,” Forest Science and Technology, 10(2), pp. 67–72. Available at: https://doi.org/10.1080/21580103.2013.842943.
- Kumar, A.K. and Sharma, S. (2017) “Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review,” Bioresources and Bioprocessing, 4, 7. Available at: https://doi.org/10.1186/s40643-017-0137-9.
- Li, H. et al. (2023) “Characterization of cellulose-degrading bacteria isolated from silkworm excrement and optimization of its cellulase production,” Polymers, 5(20), 4142. Available at: https://doi.org/10.3390/polym15204142.
- Liu, C.G. et al. (2019) “Cellulosic ethanol production: Progress, challenges and strategies for solutions,” Biotechnology Advances, 37(3), pp. 491–504. Available at: https://doi.org/10.1016/j.biote-chadv.2019.03.002.
- Mendez, J. et al. (2021) “Second-generation ethanol production by separate hydrolysis and fermentation from sugarcane bagasse with cellulose hydrolysis using a customized enzyme cocktail,” Biofuels, 12(10), pp. 1225–1231. Available at: https://doi.org/10.1080/17597269.2019.1608034.
- Mohr, A. and Raman, S. (2013) “Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels,” Energy Policy, 63(100), pp. 114–122. Available at: https://doi.org/10.1016/j.enpol.2013.08.033.
- Ratomski, P. et al. (2023) “Indicators of engine performance powered by a biofuel blend produced from microalgal biomass: A step towards the decarbonization of transport,” Energies, 16(14), 5376. Available at: https://doi.org/10.3390/en16145376.
- Rimkus, A. et al. (2024) “Impact of bioethanol concentration in gasoline on SI Engine Sustainability,” Sustainability, 16(6), 2397. Available at: https://doi.org/10.3390/su16062397.
- Rulli, M. et al. (2016) “The water-land-food nexus of first-generation biofuels,” Scientific Reports, 6, 22521. Available at: https://doi.org/10.1038/srep22521.
- Saka, A. and Afolabi, A.S. (2015) “Production and characterization of bioethanol from sugarcane bagasse as alternative energy sources,” in Proceedings of the World Congress on Engineering, London, UK, 1–3 July 2015. Hong Kong: IAEng., pp. 876–880. Available at: https://www.iaeng.org/publication/WCE2015/WCE2015_pp876-880.pdf (Accessed: September 29, 2024).
- Schnabel, A. and Hamrick, J.L. (1990) “Organization of genetic diversity within and among populations of Gleditsia triacanthos (Leguminosae),” American Journal of Botany, 77(8), pp. 1060–1069. Available at: https://doi.org/10.2307/2444577.
- Shah, A.R. and Madamwar, D. (2005) “Xylanase production under solid-state fermentation and its characterization by an isolated strain of Aspergillus foetidus in India,” World Journal of Microbiology and Biotechnology, 21, pp. 233–243. Available at: https://doi.org/10.1007/s11274-004-3622-1.
- Sharma, S. et al. (2023) “Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products,” Environments, 10(1), 6. Available at: https://doi.org/10.3390/environments10010006.
- Shukla, A. et al. (2023) “Strategies of pretreatment of feedstocks for optimized bioethanol production: distinct and integrated approaches,” Biotechnology for Biofuels and Bioproducts, 16, 44. Available at: https://doi.org/10.1186/s13068-023-02295-2.
- Smolik, M. and Kubus, M. (2009) “ISSR analysis of chosen Gleditsia accessions obtained from Polish collections,” Dendrobiology, 62, pp. 63–70. Available at: https://www.idpan.poznan.pl/images/stories/dendrobiology/vol62/62_63_70.pdf (Accessed: September 29, 2024).
- Srivastava, N. et al. (2023) “Recent advances on lignocellulosic bioresources and their valorization in biofuels production: Challenges and viability assessment,” Environmental Technology & Innovation, 29, 103037. Available at: https://doi.org/10.1016/j.eti.2023.103037.
- Su, Y. et al. (2018) “Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover,” Scientific Reports, 8, 5385. Available at: https://doi.org/10.1038/s41598-018-23626-6.
- Suzihaque, M.U.H. et al. (2022) “Biodiesel production from waste cooking oil: A brief review,” Materials Today: Proceedings, 63, Suppl. 1, pp. S490–S495. Available at: https://doi.org/10.1016/j.matpr.2022.04.527.
- Swain, M.R. et al. (2018) “Bioethanol production from rice- and wheat straw: An overview,” in: R.C. Ray and S. Ramachandran (eds.) Bioethanol production from food crops. Sustainable Sources, Interventions, and Challenges. Cambridge, MA: Academic Press, pp. 213–231. Available at: https://doi.org/10.1016/B978-0-12-813766-6.00011-4.
- Unrean, P. and Ketsub, N. (2018) “Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse,” Industrial Crops and Products, 123, pp. 238–246. Available at: https://doi.org/10.1016/j.indcrop.2018.06.071.
- Vasco-Correa, J., Ge X. and Li, Y. (2016) “Chapter 24 – Biological pretreatment of lignocellulosic bio-mass,” in S.I. Mussato (ed.) Biomass fractionation technologies for a lignocellulosic feed-stock based biorefinery. Amsterdam: Elsevier, pp. 561–585. Available at: https://doi.org/10.1016/B978-0-12-802323-5.00024-4.
- Wu, Z. et al. (2022) “Lignocellulose dissociation with biological pretreatment towards the biochemical platform: A review,” Materials Today Bio, 16, 100445. Available at: https://doi.org/10.1016/j.mtbio.2022.100445.
- Ye, Y. et al. (2023) “Effect of different ratios of gasoline-ethanol blend fuels on combustion enhancement and emission reduction in electronic fuel injection engine,” Polymers, 15(19), 3932. Available at: https://doi.org/10.3390/polym15193932.
- Zabed, H. et al. (2016) “Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches,” Renewable and Sustainable Energy Reviews, 66, pp. 751–774. Available at: https://doi.org/10.1016/j.rser.2016.08.038.
- Zhai, R., Hu, J. and Jin, M. (2022) “Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies,” Biotechnology Advances, 61, 108044. Available at: https://doi.org/10.1016/j.biotechadv.2022.108044.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5e7118c-9af3-45cc-9001-5fbcc50196e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.