Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Kompaktowy szerokopasmowy łącznik kwadraturowy z metamateriałami do zastosowań związanych z formowaniem wiązki 5G
Języki publikacji
Abstrakty
A design of a compact wideband quadrature coupler based on metamaterial is presented at 3.5 GHz. The quadrature coupler is a significant component in beamforming networks with problems of narrow bandwidth and bulky size. The proposed quadrature coupler is designed with the implementation of composite right/left-handed (CRLH) arms metamaterial transmission line (TL). The metamaterial fingers are implemented in each branch section to reduce the size and improve the bandwidth. The proposed coupler is simulated using CST software and then fabricated on the FR4 substrate with (εr=4.4 and h=1.6 mm). The coupler performance achieved a fractional bandwidth of 55.42% operated at 2.25 GHz to 4.19 GHz. The coupling factor at 3.5 GHz is -3 ±0.5 dB with a phase difference of 88.01°. Compared to conventional BLC, the proposed coupler achieved a size reduction of 40.43%. The proposed coupler is suitable to be used in future 5G beamforming applications.
Przedstawiono projekt kompaktowego szerokopasmowego sprzęgacza kwadraturowego opartego na metamateriałach dla częstotliwości 3,5 GHz. Sprzęgacz kwadraturowy jest istotnym elementem w sieciach kształtujących wiązkę z problemami związanymi z wąskim pasmem i nieporęcznymi rozmiarami. Proponowany sprzęgacz kwadraturowy został zaprojektowany z wykorzystaniem kompozytowej linii transmisyjnej metamateriałów (TL) ramion prawo/lewoskrętnych (CRLH). Palce metamateriałów są zaimplementowane w każdej sekcji odgałęzienia, aby zmniejszyć rozmiar i poprawić przepustowość. Proponowany łącznik jest symulowany za pomocą oprogramowania CST, a następnie wytwarzany na podłożu FR4 przy (εr=4,4 i h=1,6 mm). Wydajność sprzęgacza osiągnęła ułamkową przepustowość 55,42% przy pracy w zakresie od 2,25 GHz do 4,19 GHz. Współczynnik sprzężenia przy 3,5 GHz wynosi -3 ±0,5 dB przy różnicy faz 88,01°. W porównaniu z konwencjonalnym BLC, proponowany łącznik pozwolił zmniejszyć rozmiar o 40,43%. Proponowany sprzęgacz nadaje się do wykorzystania w przyszłych zastosowaniach kształtowania wiązki 5G.
Wydawca
Czasopismo
Rocznik
Tom
Strony
172--175
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
- Department of Medical Instrumentation Engineering Techniques, College of Medical Techniques, Al-Farahidi University
autor
- Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
autor
- Faculty of Engineering & Technology, Multimedia University, Melaka, Malaysia
autor
- Advance RF and Microwave Research Group (ARFMRG), School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, 81310, Malaysia
- Kejuruteraan Komputer (FKEKK),Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia
Bibliografia
- [1] ANSARI, MARAL, ET AL. “Compact Planar Beamforming Array With Endfire Radiating Elements For 5g Applications.” IEEE Transactions On Antennas And Propagation, VOL. 67, NO. 11, IEEE, 2019, PP. 6859–69.
- [2] R. A. A. Kamaruddin et al., “Return loss improvement of radial line slot array antennas on closed ring resonator structure at 28 GHz,”Przegląd Elektrotechniczny,” vol. 1, no. 5, pp. 67–71, 2021, doi: 10.15199/48.2021.05.10.
- [3] Al-Gburi, A.J.A.; Zakaria, Z.; Ibrahim, I.M.; Halim, E.Microstrip Patch Antenna Arrays Design for 5G Wireless Backhaul Application at 3. 5 GHz. Recent Adv. Electr. Electron. Eng. 2022, 865, 77–88.
- [4] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Nazli, N.F.M. Wideband Microstrip Patch Antenna for Sub 6 GHz and 5G Applications. Prz. Elektrotech. 2021, 11, 26–29.
- [5] Ghosh, Amitabha, et al. “5G Evolution: A View on 5G Cellular Technology beyond 3GPP Release 15.” IEEE Access, vol. 7, no. 5, IEEE, 2019, pp. 127639–51.
- [6]. A. J. A. Al-Gburi, I. M. Ibrahim, Z. Zakaria, and A. D. Khaleel, "Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure," (in English), ARPN Journal of Engineering and Applied Sciences, Article vol. 14, no. 10, pp. 3390-3393, 2019, doi: 10.36478/JEASCI.2019.3390.3393.
- [7] A. D. K. Al-Obaidi et al., "High efficiency dielectric resonator antenna using complementary ring resonator for bandwidth enhancement". Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, pp. 2107-2114, 2022, doi: https://doi.org/10.11591/eei.v11i4.3681.
- [8] Nasseri, Hassan, et al. “A New Method for Arbitrary Amplitude Distribution Generation in 4 × 8 Butler Matrix.” IEEE Microwave and Wireless Components Letters, vol. 30, no. 3, 2020, pp. 249–52.
- [9] Tajik, Ali, et al. “Asymmetrical 4×4 Butler Matrix and Its Application for Single Layer 8×8 Butler Matrix.” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, IEEE, 2019, pp. 5372–79.
- [10] Karimbu Vallappil, Arshad, et al. “Compact Metamaterial Based 4 × 4 Butler Matrix with Improved Bandwidth for 5G Applications.” IEEE Access, vol. 8, 2020, pp. 13573–83.
- [11] Liu, Shui, and Feng Xu. “Compact Multilayer Half Mode Substrate Integrated Waveguide 3-DB Coupler.” IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, IEEE, 2018, pp. 564–66.
- [12] Lu, Qijun, et al. “3-D Compact 3-DB Branch-Line Directional Couplers Based on Through-Silicon Via Technology for Millimeter-Wave Applications.” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 9, IEEE, 2019, pp. 1855–62.
- [13] Abdulbari, Ali Abdulateef, et al. “New Design of Wideband Microstrip Branch Line Coupler Using T-Shape and Open Stub for 5G Application.” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, 2021, pp. 1346–55.
- [14] Sorocki, Jakub, et al. “Semi-Distributed Approach to Dual-Composite Right/Left-Handed Transmission Lines and Their Application to Bandstop Filters.” IEEE Microwave and Wireless Components Letters, vol. 25, no. 12, 2015, pp. 784–86.
- [15] Vallappil, Arshad K., et al. “Metamaterial Based Compact Branch-Line Coupler with Enhanced Bandwidth for Use in 5G Applications.” Applied Computational Electromagnetics Society Journal, vol. 35, no. 6, 2020, pp. 700–08.
- [16] Phani Kumar, Kanaparthi V., and S. S. Karthikeyan. “Miniaturised Quadrature Hybrid Coupler Using Modified T-Shaped Transmission Line for Wide-Range Harmonic Suppression.” IET Microwaves, Antennas and Propagation, vol. 10, no. 14, 2016, pp. 1522–27.
- [17] Al-Gburi, A.J.A.; Ibrahim, I.M.; Zakaria, Z.; Abdulhameed, M.K.; Saeidi, T. Enhancing Gain for UWB Antennas Using FSS: A Systematic Review. Mathematics 2021, 9, 3301.
- [18] A.J.A. Al-Gburi et al., "Super compact uwb monopole antenna for small iot devices," Computers, Materials & Continua, vol. 73, no.2, pp. 2785–2799, 2022, doi: 10.32604/cmc.2022.028074.
- [19] Al-Gburi, A.J.A.; Ibrahim, I.M.; Ahmad, K.S.; Abdulhameed, M.K.; Saeidi, T. A Miniaturised UWB FSS with Stop-Band Characteristics for EM Shielding Applications. Prz. Elektrotech. 2021, 1, 142–145.
- [20] Phani Kumar, K. V., et al. “A Novel Two Section Branch Line Coupler Employing Different Transmission Line Techniques.” AEU - International Journal of Electronics and Communications, vol. 70, no. 5, Elsevier GmbH., 2016, pp. 738–42.
- [21] Seko, Murilo Hiroaki, and Fatima Salete Correra. “Dual-Band Branch-Line Coupler with Shorted Stepped-Impedance Stubs Arranged in a Π-Shaped Topology.” Microwave and Optical Technology Letters, vol. 61, no. 5, 2019, pp. 1154–60.
- [22] Keriee. H, et al., „Wideband Planar Microstrip Antenna Based on Split Ring Resonator For 5G Mobile Applications”, Prz. Elektrotech. 2021, 11,190-194.
- [23] Abdulhameed, M.K.; Hashim, S.R.; Abdalhameed, N.K.; Al-gburi, A.J.A. Increasing Radiation Power in Half Width Microstrip Leaky Wave Antenna by using Slots Technique. Int. J. Electr. Comput. Eng. 2022, 12, 392–398.
- [24] Abdulhameed, M.K.; Kod, M.S.; Al-gburi, A.J.A. Enhancement of Elevation Angle for an Array Leaky-Wave Antenna. Prz. Elektrotech. 2021, 8, 109–113.
- [25] A. J. A. Al-Gburi, I. M. Ibrahim and Z. Zakaria, “An ultra-miniaturized MCPM antenna for ultra- wideband applications,” Journal of Nano-and Electronic Physics, vol. 13, no. 5, pp. 05012-1–05012-4, 2021, doi: https://doi.org/10.21272/jnep.13(5).05012.
- [26] Zeain, M.Y., Zakaria, Z., Abu, M., Al-Gburi, A.J.A., Alsariera,H., Toding, A., Alani, S., Al-Tar ifi, M.A., Al-Heety, O.S., Lago,H. and Saeidi, T., "Design of helical antenna for nextgeneration wireless communication," Prz. Elektrotechniczny,no. 11, pp. 96–99,2020.
- [27] H. H. Keriee, M. K. A. Rahim, N. A. Nayyef, Z. Zakaria, and A. J.A. Al-Gburi, "High gain antenna at 915 MHz for off grid wirelessnetworks," Bull. Electr. Eng. Informatics, vol. 9, no. 6, pp.2449–2454,2020.
- [28] H. Keriee et al., "Millimeter-Wave Bandpass Filter By Open Loop Elliptical Ring Resonators," in 2019 International Conference on Electrical Engineering and Computer Science (ICECOS), 2-3 Oct. 2019 2019, pp. 90-92.
- [30] Ghaffarian, Mohammad Saeid, et al. “Dual-Band/Dual-Mode Rat-Race/Branch-Line Coupler Using Split Ring Resonators.” Electronics (Switzerland), vol. 10, no. 15, 2021, pp. 1-15.
- [31] Mocanu, Iulia Andreea. “Compact Dual Band Ring Coupler Using Miniaturized Metamaterial Left-Handed Impedance Inverters.” IEEE Access, vol. 9, IEEE, 2021, pp. 86119–31.
- [32] AL-GBURI, Ahmed Jamal Abdullah et al. A parametric study on strawberry radiated shaped monopole antenna for ultrawide-band applications. Bulletin of Electrical Engineeringand Informatics, vol.12, no. 1. pp. 232-239, feb. 2023.
- [33] Al-Gburi, A.J.A.; Zakaria, Z.; Ibrahim, I.M.; Halim, E. Microstrip Patch Antenna Arrays Design for 5G Wireless Backhaul Application at 3. 5 GHz. Recent Adv. Electr. Electron. Eng. 2022, 865, 77–88.
- [34] A. J. A. Al-Gburi et al., “Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review,” Micromachines, vol. 13, no. 7, p. 1048, Jun. 2022, doi: 10.3390/mi13071048.
- [35] A. J. A. Al-Gburi, I. B. M. Ibrahim, M. Y. Zeain and Z. Zakaria, "Compact Size and High Gain of CPW-Fed UWB Strawberry Artistic Shaped Printed Monopole Antennas Using FSS Single Layer Reflector," in IEEE Access, vol. 8, pp. 92697-92707, 2020, doi: 10.1109/ACCESS.2020.2995069.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5e00b07-0397-48c6-b28a-3dd09eb2f3e0