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Abstract
We analyse numerically the motion of small inertial particles, subject to gravity, in two simple
velocity fields: two-dimensional cellular flow, and a three-dimensional flow being the superpo-
sition of random Fourier velocity modes. The latter, also known as the kinematic simulation
or synthetic turbulence, has often been applied in various studies, including those aiming to
predict particle dispersion. The interplay of the particle inertia and the acceleration of gravity
has non-trivial consequences for trajectories of particles and their spatial distribution, known
as a preferential concentration. Also, we compute the average settling velocity of particles in
function of their inertia and the number of fluid velocity modes used in simulations. The present
paper aims to study these efects, as the synthetic turbulence represents an interesting option
for subfilter modeling in particle-laden large-eddy simulation.
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1 Introduction

Particle-laden turbulent flows are common in environmental studies and industrial
applications, such as cyclone separators, pulverised coal burners or steam turbines.
Actually, the inertial particle motion and separation from a flow was the first
research topic of one of the authors, undertaken with the late Professor Romuald
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Puzyrewski. We calculated then the droplet separation efficiency from the wet
steam flow in the last turbine stages [15]. Years later, that study naturally further
evolved to inquiry about the effects of turbulence on particle motion and wall
deposition, see [12] for introduction.

Nowadays, the large-eddy simulations (LES) become increasingly often used
for modelling of turbulent flows as a powerful alternative to statistical closures,
see [1], also for two-phase systems with the dispersed particles or droplets. Since
the small-scale structures are smoothed out (by definition of LES, [11]), the ques-
tion appears whether, when, and how the impact of those structures on the dis-
persed particles or droplets should be modelled. This point, called the subfilter or
subgrid particle modelling, has received a lot of attention in the literature for the
last 20 years or so, yet there is no ultimate answer so far. We have studied the
issue in wall-bounded turbulence, see [5, 14] and references therein, and recently
also in isotropic turbulence laden with particles subject to gravity [17]. The effect
of subfilter scales on one-particle dispersion in free turbulence has been relatively
well addressed, less so the impact on two-point or relative dispersion, on particle
collisions, or break-up of agglomerates. The presence of gravity adds to the diffi-
culty of the problem. In wall-bounded flows, a suitable subgrid particle modelling
for wall deposition or resuspension remains another open issue. It appears that
for some of the phenomena, structural subgrid particle closures are needed. In
other words, we look for approaches where the subgrid fluid velocity field is re-
constructed or mimicked in a possibly computationally inexpensive way. One of
the options is to use analytically prescribed fields that are kinematically correct
(divergence-free in incompressible cases), yet their dynamics is not reconstructed.
Among them are the cellular flow and the so-called cheap turbulence model, or
kinematic simulations (KS). Both flow fields have been studied long time ago in
the context of particle dispersion and settling velocity [7,8], but only recently KS
have been proposed as subfilter models for particles in LES [4, 18].

The main aim of the work reported here has been to scrutinise such velocity
fields, known as “synthetic turbulence”, and to have some hands-on experience
with using them. In the next term, these possible candidates for structural sub-
filter closures will be assessed in particle-laden LES.

2 Basic formulae

The analysis of the particle motion begins with determining the fluid velocity
field, in which the particles will move under the influence of gravity.
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First, we consider the two-dimensional cellular velocity field [8], described by

ux = U0 sin (x/L) cos (z/L) , (1)

uz = −U0 cos (x/L) sin (z/L) , (2)

where ux nad uz are the horizontal and vertical components of velocity, respec-
tively, L is the characteristic length scale and U0 is the fluid velocity scale. The
cellular field (CF) is steady and periodic by construction; it is illustrated in Fig.
1(a).

A second velocity field to be studied here is constructed as the superposition
of N random, Fourier velocity modes [2]:

u(x) =

N∑

n=1

[u1(kn) cos(kn · x) + u2(kn) sin(kn · x)] , (3)

where kn is the wavenumber vector, x is the position vector. The random vectors
u1 and u2 are constructed as the cross products, u1(kn) = ζn×kn and u2(kn) =
ξn × kn, to satisfy the continuity equation of incompressible fluid:

kn · u1(kn) = kn · u2(kn) = 0 =⇒ divu = 0. (4)

Components of the vectors ζn and ξn are chosen randomly from the standard
Gaussian distribution. The components of the wavenumber vector kn are chosen
randomly from the uniform distribution over a sphere. Figure 1(b) shows velocity
vectors in a realisation of the resulting KS field in the x-z plane (for N = 16
random modes) whereas Fig. 2 shows the isocontours of the horizontal velocity
component in KS for two values of N .
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Figure 1: Velocity vectors of: (a) cellular flow field, (b) KS with N = 16 modes.
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Figure 2: Contours of the synthetic velocity field, horizontal component: (a) N = 8, (b) N = 32.
N is the number of Fourier modes in KS.

The equations describing the dynamics of the particles are in the form

dxp

dt
= vp , (5)

dvp

dt
=

1

τp
(u− vp) + g , (6)

where u = u(xp) is the fluid velocity at the particle location, vp is the particle
velocity and g = gz0 is gravitational acceleration. A system of Np particles will
be considered, yet the current particle index is skipped in Eqs. (5)–(6) and in the
following for simplicity. The product of the particle relaxation time, τp, and the
gravitational acceleration determines the particle settling velocity (in the fluid at
rest), called the terminal velocity:

VT = τpg . (7)

The behaviour of particles suspended in a fluid flow is characterised by two di-
mensionless quantities. The first one is the non-dimensional time scale, or the
Stokes number, defined as

St =
τpU0

L
, (8)

where the particle relaxation time is 0.01 ≤ τp ≤ 1. It is a characteristic time
required for a particle to adjust its velocity to a new condition of forces in the
fluid. The range of the Stokes numbers considered in the simulations is shown in
Tab. 1. Another non-dimensional quantity governing the particle motion is the
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non-dimensional velocity scale, introduced as the ratio of VT and U0 for cellular
flow.

Table 1: The Stokes numbers.

Characteristic fluid Min value Max value

velocity U0 (τp = 0.01) (τp = 1)

0.1 0.002 0.2

0.2 0.004 0.4

0.3 0.006 0.6

0.4 0.008 0.8

0.5 0.01 1.0

0.6 0.012 1.2

0.7 0.014 1.4

0.8 0.016 1.6

0.9 0.018 1.8

1.0 0.02 2.0

The system of Eqs. (5)–(6) was integrated using the exponential implicit
scheme. For horizontal components, here ux, and the vertical one, uz, it is written
as

vn+1
p,x = vnp,x exp (−∆t/τp) + un+1

x

[
1− exp (−∆t/τp)

]
, (9)

vn+1
p,z = vnp,z exp (−∆t/τp) +

(
un+1
z − τpg

)[
1− exp (−∆t/τp)

]
, (10)

where tn+1 = tn +∆t and ∆t is the time step. Such formulae are useful for small
inertia particles since otherwise the stability criterion of the standard explicit
schemes, ∆t < τp, may result in prohibitively small time steps of the simulation.
For the integration of particle positions, a simple explicit scheme has been applied

xn+1
p = xn

p + vn
p∆t . (11)

This scheme is not fully consistent with Eqs. (9)–(10), yet for sufficiently small
time steps it converges with the more complex formulae that result from the exact
integration of Eqs. (9)–(10) over a time step ∆t.
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3 Particle trajectories and distribution in space

For the case of cellular flow (CF) field, the particles were regularly arranged (at
equal intervals) on the horizontal section of length 2L, in the middle of the first
cell (z = 0.25). For the case of kinematic simulations (KS), the particles were
arranged at equal intervals on the length 2L at z = 0.5L, where L = 2π/|k1|. In
both CF and KS cases, it is assumed that the particle initial velocity equals 0.

(a) St = 0.006

(b) St = 0.06

Figure 3: Particles trajectories in cellular flow (U0 = 0.3, L = 0.5).

Examples of computed particle trajectories in the cellular flow are shown in Figure
3. With the increase in the Stokes number, the particle trajectories flatten, i.e.
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they become less sensitive to the structure of the flow field. In Fig. 3(a) are
shown the elliptical-helical trajectories of the particles of St = 0.006 in the initial
phase of their movement. The picture is further magnified in Fig. 4(a). This
effect of particle capture within a vortical structure occurs for particles whose
terminal velocity, VT , is less than the amplitude of the fluid velocity, U0. The
number of captured particles increases with increasing difference between these
two parameters ∆V = U0 − VT (see Fig. 4). A number of the exact trajectories
of selected particles are shown in Fig. 5. The differences of the trajectories result
from the initial locations of the particles.

(a) ∆V ≈ 0.2 (St = 0.006) (b) ∆V ≈ 0.006 (St = 0.018)

Figure 4: Examples of the eliptical particle trajectories in CF (∆V = U0 − VT ), single rotation
cycle (Np = 35 and Np = 5 particles respectively).

(a) (b)

Figure 5: Trajectories of selected particles in CF: (a) first rotation depending on the starting
point, St = 0.006; (b) three different trajectories, St = 0.018.

Examples of particle trajectories from kinematic simulations are shown in Figs. 6,
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7, and 8. With the increase of the particle relaxation time, the trajectories flatten.
If the velocity field is ‘periodic’, the particles trajectories are ‘periodic’ too. With
a larger number of the included Fourier modes, the flattening of trajectory occurs
at a larger particle relaxation time. Particle trajectories without gravity were
first analysed in [3] to assess a flow mode which can be identified with turbulent
dispersion in KS.

(a) N = 4 (b) N = 8

Figure 6: Particles trajectories in KS at τp = 0.01; simulations with a different number of
velocity modes N .

(a) N = 8 (b) N = 16

Figure 7: Particle trajectories in KS at τp = 0.1; simulations with a different number of velocity
modes N .

The particle trajectories are readily represented in plots for 2D flow cases. Yet,
in general (including for 3D flows), it is quite informative to analyse the statistics
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(a) N = 16 (b) N = 32

Figure 8: Particle trajectories in KS at τp = 0.2; simulations with a different number of velocity
modes N .

of particle locations in space. The non-uniformity of particle distribution, due to
their interaction with the underlying flow structures, is called the preferential con-
centration or the clustering phenomenon. It is readily observed in experiments [9]
and in fully resolved numerical simulations of turbulent flows [6]. There are var-
ious measures of preferential concentration [10]. Previously, we have applied the
techniques of bin counting and the computation of the radial distribution func-
tion [13]. In the present work, we have used the method of Voronoi tesselation,
first proposed for particle-laden flows in [9]. In thin 2D horizontal slices of the
computational domain, we have constructed the Voronoi cells (polygons) out of
the particle locations, p = 1, 2, . . . , Np, at a given time instant, accounting for the
periodicity of the particle distribution in each slice. The number of equidistant
slices was 20 to obtain reasonable statistics and the particle locations were consid-
ered independent in each slice. In Fig. 9, a typical Voronoi tesselation is shown,
corresponding to the locations of two classes of inertial particles in KS at a final
time of simulation. The particle distribution in space is statistically steady, the
clustering effects are visible.

Then, a good quantitative measure of preferential concentration is provided
through the Voronoi histograms. Let Ap be the area of the Voronoi cell con-
taing particle p. A suitably normalised histogram becomes the probability den-
sity function (PDF), denoted as fA(a), of the area normalised by the mean value,
a = A/〈A〉. The PDF is further compared with the one corresponding to the uni-
form, random distribution of particles in space, described by the Poisson distribu-
tion whose standard deviation is σA = 0.52. When the preferential concentration
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Figure 9: The Voronoi tesselation applied to the statistically-steady distribution of inertial par-
ticles in KS; a horizontal slice of the flow domain. Particles of: (a) τp = 0.01, (b)
τp = 0.1. Particle locations are indicated by •.

of particles is present, then the values of σA and also the PDF tails at small and
large A (corresponding to particle clusters and voids, respectively) are higher than
those for the uniform distribution. The histograms of the normalised Voronoi area
for heavy particles in KS are shown in Fig. 10. At the initial time, the standard
deviation of the cell area PDF is very close to that corresponding to the random
distribution; at a final time, it becomes somewhat larger (σA = 0.56) indicating
the presence of preferential concentration (see also symbols in the figure).

It is interesting to note that a nice visualisation, resembling typical preferential
concentration patterns in a flow laden with small particles, is presented on the
front cover of a successful textbook on fluid mechanics, co-authored by the late
professor Puzyrewski [16].

4 Average settling velocity of the particles

The statistical samples for each choice of parameters (St and U0) consisted of
100 particles. In the case of cellular flow, due to the large variability of particle
trajectories, the start times of collecting information about the particles were
determined in two ways. The particles whose characteristic time was less than
τp = 0.3 were counted after reaching the distance of 5L. Larger particles were
counted after reaching the time of 5τp. The selection of such running start points
provides a stable period of the particle trajectories. The determination of the
average speed of particles was carried on the section 2L. Figure 11 shows the
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Figure 10: The PDF of the normalised area of Voronoi cells constructed for τp = 0.1 particles in
KS out of horizontal slices in the flow domain. The theoretical PDF corresponding to
a random uniform distribution in 2D (solid line), the computed PDF corresponding
to the initial (dotted line), and final (•) particle distribution.

influence of the velocity scale U0 on the settling velocity of the particles in CF. In
terms of the value of U0 exceeding the velocity VT (see Fig. 11(a)), the averaged
vertical component z of the particle velocity significantly exceeds the terminal
velocity VT . This illustrates the monotonic increase in the value for the smallest
St number (see Fig. 11(b)). When the two velocities VT and U0 become close to
each other, the minimum moves to the right with the Stokes number.

In the case of KS, the start time of collecting particle information was chosen
after reaching the distance of 3L. The selection of such running start points
provides a stable period of the particle trajectories. The determination of the
average velocity of particles was carried on the section 6L with further averaging
over 10 flow realisations.

For more complex velocity fields (N = 16 and 32), the averaged component z
of the particle velocity exceeds the value of the fall velocity VT (see also [19]). This
is illustrated by the monotonic increase of the value for the smallest VT considered
(Fig. 12). The maximum value of the difference between averaged velocity 〈Vz〉
and terminal velocity VT increases with the number of the Fourier modes and it
corresponds to a larger value of the falling velocity.
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(a)

(b)

Figure 11: The average settling velocity of particles in CF, normalised with the terminal velocity
VT : (a) amplitude of the fluid velocity, (b) averaged vertical component of the particle
velocity 〈Vz〉.

5 Conclusion

In the paper, we have considered a simple, two-dimensional cellular velocity field
and the kinematic simulations with a number of spatial modes of different wave
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numbers to analyse the dynamics of inertial particles subject to gravity. This is
a necessary first step to scrutinise such flows as potential structural models of
subfilter turbulence for LES of particle-laden simulations of more complex flows.
It has been observed that particle trajectories are non-trivially modified by the
flow structures. More important, the mean particle settling velocity is different
from that in the quiescent fluid. In some St parameter range, the settling velocity
is enhanced due to preferential sampling of particle trajectories in the vortical
flow field.
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