Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The study aims to evaluate the influence of selected modification parameters with phosphorus and strontium on the structure of the AlSi21CuNi alloy. Design/methodology/approach: Test smelting was conducted using a metal bath heating temperature of 850°C for 30 minutes. Once the temperature of the liquid metal was reduced to 750°C, the modification procedure was carried out. Casting was carried out using a metal mould at 10, 30 and 60 minutes after the modifiers were introduced into the metal bath. The first smelting involved the application of an AlCuP modifier at 350 ppm P by weight of the alloy. The next three smeltings were carried out by simultaneously introducing AlCuP (180 ppm P) and AlSr modifier (150, 250, 350 ppm Sr) into the metal bath. The last smelting was carried out to obtain samples of unmodified silumin. The smelting was carried out using the same procedure as for the modified alloy, omitting the introduction of modifiers into the metal bath. Findings: The conducted modification treatments were evaluated using qualitative and quantitative analysis methods of the microstructure of samples taken from test castings. The metallographic studies were carried out using a scanning electron microscope (SEM) and computer image analysis software. Research limitations/implications: It has been found that the simultaneous modification, i.e. with phosphorus and strontium additives of primary silicon crystals and refinement of the eutectic, represents a compromise between satisfactory fragmentation of the primary silicon crystals and the degree of refinement of the eutectic. The contact time of the modifiers with the metal bath is an important modification parameter in the given context. Further studies on the complex modification with phosphorus and strontium of other alloys from the group of hypereutectic silumins are justified in order to obtain material properties satisfactory to customers, i.e. manufacturers of various types of products. Practical implications: The simultaneous modification of primary and eutectic silicon into hypereutectic silumins is the key to improving their mechanical properties and wear resistance, which translates into the possibility of producing lightweight components for the automotive industry. Originality/value: The paper presents the results of metallographic studies of the AlSi21CuNi alloy before and after modification treatments in the form of qualitative and quantitative analyses of the microstructure of primary and eutectic silicon.
Wydawca
Rocznik
Tom
Strony
49--59
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
- Institute of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
autor
- Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] P. Hryniewicz, W. Banaś, K. Foit, A. Gwiazda, A. Sekala, Modelling cooperation of industrial robots as multi-agent systems, IOP Conference Series: Materials Science and Engineering 227/1 (2017) 012061. DOI: https://doi.org/10.1088/1757-899X/227/1/012061
- [2] A. Gwiazda, W. Banaś, A. Sekala, K. Foit, P. Hryniewicz, G. Kost, Construction typification as the tool for optimizing the functioning of a robotized manufacturing system, IOP Conference Series: Materials Science and Engineering 95/1 (2015) 012103. DOI: https://doi.org/10.1088/1757-899X/95/1/012103
- [3] S.J. Chen, L.M. Mazur, M. Sąsiadek, Project task flow optimisation and departmental flow analysis using design structure matrix and genetic algorithm, International Journal of Logistics Systems and Management 15/1(2013) 68-92. DOI: https://doi.org/10.1504/IJLSM.2013.053239
- [4] D. Krenczyk, A. Dobrzańska-Danikiewicz, The deadlock protection method used in the production systems, Journal of Materials Processing Technology 164-165 (2005) 1388-1394. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.056
- [5] A. Adel, Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas, Journal of Cloud Computing 11/1 (2022) 40. DOI: https://doi.org/10.1186/s13677-022-00314-5
- [6] E. Vandeweert, C. Tokamanis, Making the Materials to Drive Europe's Energy Revolution, SETIS Magazine 8 (2015) 24-25.
- [7] F. Lourenço, J. de Moraes, C. Fornari, S. Jorge, P. Tardio, M. Gonçalves, E. Nara, Analysis of Product Life Cycle Performance Strategies: MOORA Method, Easy Chair ‒ Preprint 14456 (2024) 1-12.
- [8] P. Schlafka, A.W. Bydałek, The Influence of the Proportion of Charge from Waste Materials on the Quality of High Pressure Castings, Archives of Foundry Engineering 19/2 (2019) 21-24. DOI: https://doi.org/10.24425/afe.2019.127110
- [9] K. Białas, A. Sękala, Vibration analysis of mechanical systems with the discrete-continuous distribution of parameters, Solid State Phenomena 198 (2013) 698- 703. DOI: https://doi.org/10.4028/www.scientific.net/SSP.198.698
- [10] A. Jadhav, V.S. Jadhav, A review on 3D printing: An additive manufacturing technology, Materials Today: Proceedings 62/4 (2022) 2094-2099. DOI: https://doi.org/10.1016/j.matpr.2022.02.558
- [11] E.E. Feldshtein, O.G. Devojno, M.A. Kardapolava, N.I. Lutsko, D. Żurek, M. Michalski, Tribological characteristics of composite coatings formed by laser cladding of powders of nickel self-fluxing alloy and bronze, Journal of Friction and Wear 37 (2016) 454- 461. DOI: https://doi.org/10.3103/s1068366616050056
- [12] Z. Zheng, W. Mao, Z. Liu, D. Wang, R. Yue, Refinement of primary Si grains in Al–20%Si alloy slurry through serpentine channel pouring process, International Journal of Minerals, Metallurgy and Materials 23 (2016) 572-580. DOI: https://doi.org/10.1007/s12613-016-1268-2
- [13] W.S. Liu, R.C. Wang, C.Q. Peng, J.Y. Mo, X.W. Zhu, J. Peng, Research progress of spray deposited high Si- Al alloys for electronic packaging, The Chinese Journal of Nonferrous Metals 12 (2012) 3446-3455.
- [14] T. Lipinski, Modification of AlSi21CuNi alloy by fast cooled alloy with Al, B and Ti, Proceedings of the International Scientific Conference Engineering for Rural Development, Latvia, 2016, 940-945.
- [15] E. Tillová, M. Chalupová, L. Kuchariková, M. Bonek, M. Uhríčik, L. Pastierovičová, Study of Si morphology in AlSi21CuNiMg cast alloy using col our and deep etching, Bulletin of the Polish Academy of Sciences: Technical Sciences 71/2 (2023) e144618. DOI: https://doi.org/10.24425/bpasts.2023.144618
- [16] P. Yan, W. Mao, J. Fan, B. Wang, Simultaneous Refinement of Primary Si and Modification of Eutectic Si in A390 Alloy Assisting by Sr-Modifier and Serpentine Pouring Channel Process, Materials 12/19 (2019) 3109. DOI: https://doi.org/10.3390/ma12193109
- [17] A. Hekmat-Ardakan, F. Ajersch, Thermodynamic evaluation of hypereutectic Al-Si (A390) alloy with addition of Mg, Acta Materialia 58/9 (2010) 3422-3428. DOI: https://doi.org/10.1016/j.actamat.2010.02.017
- [18] M. Michalski, F. Romankiewicz, AlSi21CuNi silumin modification with phosphor and strontium micro additions, E3S Web of Conferences 19 (2017) 03026. DOI: https://doi.org/10.1051/e3sconf/20171903026
- [19] F.C. Robles- Hernandez, J.H. Sokolowski, Thermal analysis and microscopical characterization of Al-Si hypereutectic alloys, Journal of Alloys and Compounds 419/1-2 (2006) 180-190. DOI: https://doi.org/10.1016/j.jallcom.2005.07.077
- [20] R. Haghayeghi, E.J. Zoqui, G. Timelli, Enhanced refinement and modification via self-inoculation of Si phase in a hypereutectic aluminium alloy, Journal of Materials Processing Technology 252 (2018) 294-303. DOI: https://doi.org/10.1016/j.jmatprotec.2017.09.032
- [21] J. Abboud, J. Mazumder, Developing of nano sized fibrous eutectic silicon in hypereutectic Al–Si alloy by laser remelting, Scientific Reports 10 (2020) 12090. DOI: https://doi.org/10.1038/s41598-020-69072-1
- [22] J. Pezda, The modification process of AlSi21CuNi silumin and its effect on change of mechanical properties of the alloy, Archives of Foundry Engineering 11/2 (2011) 101-104.
- [23] J. Wang, Z. Guo, J.L. Song, W.X. Hu, J.C. Li, S.M. Xiong, Morphology transition of the primary silicon particles in a hypereutectic A390 alloy in high pressure die casting, Scientific Reports 7 (2017) 14994. DOI: https://doi.org/10.1038/s41598-017-15223-w
- [24] Z. Hu, Q. Huo, Y. Chen, M. Liu, X. Chen, Improving Mechanical Property of Hyper-Eutectic Al-Si Alloys via Regulating the Microstructure by Rheo-Die- Casting, Metals 13/5 (2023) 968. DOI: https://doi.org/10.3390/met13050968
- [25] J.H. Jeon, J.H. Shin, D.H. Bae, Si phase modification on the elevated temperature mechanical properties of Al–Si hypereutectic alloys, Materials Science and Engineering: A 748 (2019) 367-370. DOI: https://doi.org/10.1016/j.msea.2019.01.119
- [26] Z. Zhu, J.H. Wang, Y. Liu, C.J. Wu, H. Tu, X.P. Su, Effect of Melt Purification Treatment on the Solidified Microstructure of Hypereutectic Al-Si Alloys, Materials Today Communications 35 (2023) 106000. DOI: https://doi.org/10.1016/j.mtcomm.2023.106000
- [27] C. Gong, H. Tu, C. Wu, J. Wang, and X. Su, Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B, Materials 11/3 (2018) 456. DOI: https://doi.org/10.3390/ma11030456
- [28] X.Z. Zhu, S.H. Wang, X.X. Dong, X.F. Liu, S.X. Ji, Morphologically templated nucleation of primary Si on AlP in hypereutectic Al-Si alloys, Journal of Materials Science and Technology 100 (2022) 36-45. DOI: https://doi.org/10.1016/j.jmst.2021.06.009
- [29] B.K. Njuguna, J.Y. Li, Y. Tan, Q.Q. Sun, P.T. Li, Grain refinement of primary silicon in hypereutectic Al-Si alloys by different P-containing compounds, China Foundry 18 (2021) 37-44. DOI: https://doi.org/10.1007/s41230-021-0074-2
- [30] L.L. Ge, R.P. Liu, G. Li, M.Z. Ma, W.K. Wang, Solidification of Al-50 at.%Si alloy in a drop tube, Materials Science and Engineering: A 385/1-2 (2004) 128-132. DOI: https://doi.org/10.1016/j.msea.2004.06.037
- [31] J. Schmitz, B. Hallstedt, J. Brillo, I. Egry, M. Schick, Density and thermal expansion of liquid Al-Si alloys, Journal of Materials Science 47 (2012) 3706-3712. DOI: https://doi.org/10.1007/s10853-011-6219-8
- [32] C. Li, C.Q. Peng, K. Yu, R.C. Wang, J. Yang, R. Liu, Microstructure and properties of spray deposition 70%Si-Al alloy for electronic packaging applications, The Chinese Journal of Nonferrous Metals 2 (2009) 303-307.
- [33] A. Tomar, R. Mittal, D. Singh, Strength and elongation of spray formed Al-Si-Pb alloys, International Journal of Minerals, Metallurgy and Materials 21 (2014) 1222- 1227. DOI: https://doi.org/10.1007/s12613-014-1030-6
- [34] S. Nafisi, R. Ghomashchi, The microstructural characterization of semi-solid slurries, JOM 58 (2006) 24-30. DOI: https://doi.org/10.1007/s11837-006-0175-9
- [35] S.S. Shin, E.S. Kim, G.Y. Yeom, J.C. Lee, Modification effect of Sr on the microstructures and mechanical properties of Al-10.5Si-2.0Cu recycled alloy for die casting, Materials Science and Engineering: A 532 (2012) 151-157. DOI: https://doi.org/10.1016/j.msea.2011.10.076
- [36] P. Xing, B. Gao, Y. Zhuang, K. Liu, G. Tu, Effect of erbium on properties and microstructure of Al–Si eutectic alloy, Journal of Rare Earths 28/6 (2010) 927-930. DOI: https://doi.org/10.1016/S1002-0721(09)60222-2
- [37] G.L. Zhu, N.J. Gu, B.J. Zhou, Effects of combining Na and Sr additions on eutectic modification in Al–Si alloy, IOP Conference Series: Materials Science and Engineering 230 (2017) 012015. DOI: https://doi.org/10.1088/1757-899X/230/1/012015
- [38] L. Tian, Y. Guo, J. Li, F. Xia, M. Liang, Y. Bai, Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al–Si-Cu-Mg-Ni piston alloy, Materials 11/7 (2018) 1230. DOI: https://doi.org/10.3390/ma11071230
- [39] O.S. Fatoba, M.E. Makhatha, E.T. Akinlabi, The Effects of Rapid Cooling on the Improved Surface Properties of Aluminium Based Coatings by Direct Laser Deposition, in: S. Sivasankaran (ed), Aluminium Alloys - Recent Trends in Processing, Characterization, Mechanical Behavior and Applications, Intech Open, London, 2017, 119-136. DOI: http://dx.doi.org/10.5772/intechopen.71698
- [40] E. Ogris, A. Wahlen, H Lüchinger, P.J. Uggowitzer, On the silicon spheroidization in Al-Si alloys, Journal of Light Metals 2/4 (2002) 263-269. DOI: https://doi.org/10.1016/S1471-5317(03)00010-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5df8d59-2f7e-4b80-adec-fefbe29bc3ab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.