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1. STATEMENT OF THE PROBLEM

In this work, we are concerned with a class of quasi-linear parabolic problems with
nonlinear boundary conditions, whose model reads as follows:





∂u
∂t − ∆u + G(t, x, u, ∇u) = f(t, x) in QT ,

u(0, x) = 0 in Ω,
∂u
∂ν + γ(t, σ, u) = g(t, σ) on ΣT ,

(1.1)

where Ω is an open regular bounded subset of RN for N ≥ 1, with smooth boundary ∂Ω,
T > 0, QT = (0, T ) × Ω and ΣT = (0, T ) × ∂Ω. ν denotes the unit normal vector to the
boundary ∂Ω and ∆ is the Laplacian operator. The nonlinearity G is a Carathéodory
function and γ represents the nonlinearity defined at the boundary ΣT . The given data
f , g are two measurable functions. This kind of problems arises from the modeling of
the standard nonlinear heat-transfer equation following the Kirchhoff, and enthalpy
transformations. For further elaboration, we refer the readers to see [4, 24, 30–32].

The studies of nonlinear partial differential equations have attracted much atten-
tion over the last twenty years. Several works have been interested in the existence,
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uniqueness and asymptotic behaviors of solutions to such problems under different
conditions and using various techniques [1, 3, 19, 20, 23, 29]. In particular, PDEs
involving nonlinear boundary conditions are of special interest to various areas of
applied mathematics, physics and control theory. The book by Rădulescu et al [25] is
one of the most suitable references to understanding theoretical analysis of nonlinear
PDEs. This book can be considered as the starting to study the complex behaviors
of nonlinear PDEs via different approaches such as fixed point methods, topological
degree, penality method, etc. Systems of the form (1.1) are used to model various
problems issued from different fields, such as biology, chemistry, and physics. Therefore,
several researchers have treated this type of problem under either Dirichlet or Neumann
boundary conditions, and different analytical and numerical techniques and methods
for the existence problem have been used [2, 4, 7, 12–16, 28].

In order to trace the objectives of our work, we propose to start by recalling
some previous studies which strongly rely upon our problem. One can mention the
following: The work by Amann [5] focuses on the existence problem of nonlinear
elliptic equations with nonlinear boundary conditions. Completely continuous maps in
ordered Banach spaces are used to extend the applicability of the general existence
and uniqueness theorem, by obtaining sufficient criteria for the existence of sub and
super-solutions. The result developed in this work was based on the transformation
of the proposed nonlinear elliptic boundary value problem into an equivalent fixed
point equation in C(Ω). In [11], the authors deal with the existence of a solution
of a ϕ-Laplacian problem with nonlinear boundary conditions. Using the sub- and
super-solution method combined with the Nagumo condition, the authors established
the existence of solutions to the studied problem and derived a-priori bounds for the
derivatives of the solutions. Using topological methods, Amster [6] proved the existence
of solutions that belong to the space C2(Ω) ∩ C1(Ω) of a nonlinear elliptic second order
problem, with nonlinear boundary conditions under a variant of the so-called Hartman
condition. Their proof relies on the maximum principle and the unique solvability of
the associated linear Robin problem. The work [8] concerned by the existence and
uniqueness of entropy solutions for a quasilinear parabolic equation under a nonlinear
boundary condition. Their proof was based on the nonlinear semi-group theory. Last
but not least, it is worth mentioning that the authors in [18] used a combination of the
truncation method, and Schauder’s fixed point theorem to obtain an existence result
for a class of the periodic version of quasilinear parabolic problems under nonlinear
boundary conditions.

In this paper, we aim to establish the existence of solutions to (1.1) with weak
regularities on data f and g using general assumptions on the nonlinearities. We
shall assume that (f, g) belongs only to L1(QT ) × L1(ΣT ), and we will suppose that
G(t, x, u, ∇u) enjoy some growth structure and involves a sign conditions. Further,
the nonlinear boundary term γ(t, σ, u) will be assumed to meet some specific growth
conditions. The last one will be used to derive some coercivity property of the considered
operator. We would like to mention that the major difficulties in our work lie not only in
consideration of irregular data but also in the absence of the initial condition (u0 = 0).
In general, the standard theory developed for initial boundary value problems does
not be applied. By taking into account the nature of our assumptions, we can see that
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the present work contributes to enriching the existing literature not only on nonlinear
PDEs with L1 data but also on those having Neumann and Robin-type boundary
conditions.

In the following points, we will highlight our main objectives:
– establish the existence and uniqueness of weak solution to the heat equation with

nonlinear boundary conditions and L2 data,
– develop Leray–Schauder’s fixed point method to investigate the existence of a weak

solution to (1.1) with bounded nonlinearities,
– show the existence of a weak solution to (1.1) with L1 data,
– prove compactness results which will be applicable to parabolic equations with

nonlinear boundary conditions.
We have arranged the rest of our paper as follows: In Section 2, we put forward
mathematical preliminaries and assumptions used to solve problem (1.1). Section 3
tackles interest in a modified version of problem (1.1) by taking the case of G ≡ 0, f
and g are regular enough. We will use the monotone operator theory to investigate the
existence and uniqueness of a weak solution when the data belongs to L2. In Section 4,
we employ Leray–Schauder’s topological degree to obtain the existence of a weak
solution to problem (1.1) in the particular case, where the nonlinearity G is bounded.
Last but not least, in the fifth section, we prove the existence of a weak solution to
problem (1.1) when the data belonging only to L1 and the nonlinearity has quadratic
growth with respect to the gradient. We close our paper with Section 6 which takes an
interesting compactness result of the heat operator with nonhomogeneous Neumann
boundary conditions and L1 data.

2. MATHEMATICAL PRELIMINARIES AND ASSUMPTIONS

For the reader’s convenience, we propose to exhibit the functional framework which
involves the L2 setting. Let 0 < T < +∞, we define the functional space

V := L2(0, T ; H1(Ω)).

It is well known that

||| u |||V :=



∫

QT

|∇u(t, x)|2dx dt +
∫

QT

|u(t, x)|2dx dt




1
2

,

stands the standard norm of the space V . In addition, we can notice that the following
norm

∥u∥V :=



∫

QT

|∇u(t, x)|2dx dt +
∫

ΣT

|u(t, σ)|2dσ dt




1
2

is an equivalent norm to the standard norm ||| · |||V . As we can see, V is a Banach,
reflexive and separable space. We will denote by V∗ the topological dual space of V
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which reads as V∗ := L2(0, T ; (H1(Ω))∗), and we designate by ⟨·, ·⟩ the duality pairing
between

(
H1(Ω)

)∗ and H1(Ω). Now, we are ready to define the space

W (0, T ) =
{

u ∈ V : ∂u

∂t
∈ V∗

}
.

We equip it with the norm

∥u∥W(0,T ) = ∥u∥V +
∥∥∥∥

∂u

∂t

∥∥∥∥
V∗

.

From the classical result [21], we have the following embeddings:

W (0, T ) ↪→ C
(
[0, T ]; L2(Ω)

)
, (2.1)

W (0, T )
compact

↪→ L2(QT ). (2.2)

Now we will recall a surjectivity result for monotone operators. This result will be
used in the following.

Proposition 2.1 ([21]). If X is a reflexive Banach space, L : D(L) ⊆ X → X ∗ is
a linear maximal monotone operator and A : X → X ∗ is a hemicontinuous, monotone
and coercive operator (i.e. ⟨A(u),u⟩X ∗,X

∥u∥X
→ +∞ as ∥u∥X → ∞), then L+A is surjective.

2.1. ASSUMPTIONS

In this paper, we will examine the existence of solutions to problem (1.1) under the
following assumptions:

(A1) The functions f and g are measurable functions belonging to certain Lebesgue
spaces.

(A2) γ : ΣT × R −→ R is a Carathéodory function which satisfies for almost (t, σ)
in ΣT and for all s in R

s 7−→ γ(t, σ, s) is a nondecreasing function, (2.3)
sγ(t, σ, s) ≥ γ0s2, (2.4)
|γ(t, σ, s)| ≤ γ1(1 + |s|θ), (2.5)

where γ0 and γ1 are nonnegative constants and 1 ≤ θ < N+2
N .

(A3) G : QT × R× RN → R is a Carathéodory function which satisfies some growth
conditions to be specified later.

2.2. SOME TRUNCATIONS FUNCTIONS

For any k > 0, we define the standard truncation function

Tk(s) = min{k, max{s, −k}}
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and we note Sk(v) =
∫ v

0 Tk(s)ds. Furthermore, we can construct τk ∈ C2 a more
regular truncation function such that





τk(r) = r if 0 ≤ r ≤ k,

τk(r) ≤ k + 1 if r ≥ k,

0 ≤ τ ′
k(r) ≤ 1 if r ≥ 0,

τ ′
k(r) = 0 if r ≥ k + 1,

0 ≤ −τ ′′
k (r) ≤ C(k).

Typically, the construction of such truncation τk can be given as follows:

τk(s) =





s in [0, k],
1
2 (s − k)4 − (s − k)3 + s in [k, k + 1],
1
2 (k + 1) for s > k + 1.

For ϵ > 0, we define the following convex function:

jϵ(s) =
{

− 1
ϵ + 1

ϵ exp
(
−ϵs − ϵ2 ln

(∣∣ s−ϵ
ϵ

∣∣)) if s < 0,

0 if s ≥ 0.

By a simple computation, we can easily show that jϵ satisfies the following properties:

(a) j′
ϵ(s) is bounded for all s ∈ R,

(b) j′
ϵ(s) → sign−(s) when ϵ → 0,

(c) jϵ(s) → (s)− when ϵ → 0,

where sign− is the following “sign” function:

sign−(r) =
{

−1 if r < 0,

0 if r ≥ 0.

In the remainder of this paper, we denote by C every generic and nonnegative constant.
The value of this constant can change in different situations. It may depend on the
given data but always remains independent of the estimated sequence index.

3. EXISTENCE RESULTS IN L2 FRAMEWORK

The aim of this section is to provide the existence and uniqueness result of the weak
solution to (1.1) without nonlinearity (G(t, x, u, ∇u) = 0). Then the studied problem
reads as follows: 




∂u
∂t − ∆u = f(t, x) in QT ,

u(0, x) = 0 in Ω,
∂u
∂ν + γ(t, σ, u) = g(t, σ) on ΣT .

(3.1)
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Here, we will assume that the term source f belongs to L2(QT ), and the data g stands
an element of L2(ΣT ). For the nonlinearity γ(·), we shall assume that hypotesis (A2)
holds. Then, our purpose is to investigate the existence and uniquness of weak solution
to problem (1.1) in the following sense.
Definition 3.1. A measurable function u : QT → R is said to be a weak solution to
problem (3.1) if it satisfies the following conditions:

u ∈ W(0, T ), u(0, x) = 0 in L2(Ω),
T∫

0

〈
∂u

∂t
, φ

〉
dt +

∫

QT

∇u∇φ dxdt+
∫

ΣT

γ(t, σ, u)φ dσdt =
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt,

(3.2)
for all test functions φ ∈ V.

We exhibit the main result of this section in the following theorem.
Theorem 3.2. Let f ∈ L2(QT ), g ∈ L2(ΣT ) and assume that assumption (A2) holds,
then problem (3.1) admits a unique weak solution u in the sense of Definition 3.1.
Furthermore, the weak solution u satisfies the following energy estimate:

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥V ≤ C
(
∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
, (3.3)

where C is a constant depending only on T, Ω, N and γ0.

3.1. PROOF OF THEOREM 3.2

We will detail the proof of Theroem 3.2 in the following subsections.

3.1.1. Existence result
In this step, we are aiming to establish the existence of weak solution to (3.1). To do
so, we will formulate the parabolic partial differential equation (3.1) into an equivalent
abstract equation posed in the Banach space V. Thereafter, we shall use the result
of Proposition 2.1 to study the existence of solution to the last one. Let us start by
introducing

D(L) := {u ∈ W(0, T ) : u(0) = 0} .

By virtue of the density property of C∞
c (QT ) in V, and using the fact that

C∞
c (QT ) ⊂ D(L), one can conclude that D(L) is dense in V.

Here, we introduce the operator L : D(L) −→ V∗ such that

⟨Lu, φ⟩ :=
T∫

0

〈
∂u

∂t
, φ

〉
dt, for all φ ∈ V.

Then, the result given in [21, Lemma 1.1, p. 313] leads to conclude that L is a closed,
skew-adjoint and maximal monotone operator. Now, we consider on V the following
operator

A : V −→ V∗,
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satisfying

⟨Au, φ⟩ :=
∫

QT

∇u∇φ dxdt +
∫

ΣT

γ(t, σ, u)φ dσdt, for all φ ∈ V. (3.4)

One can therefore verify that the existence of a weak solution of (3.1) is equivalent to
finding a solution to the abstract equation written as follows:

Lu + Au = F , (3.5)

where F stands for an element of V∗ defined as

⟨F , φ⟩ :=
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt, for all φ ∈ V.

Now, we are in the setting to verify the conditions of Proposition 2.1. We have the
following results:

(a) The operator A is hemicontinuous. Let u, v ∈ V, we have

⟨Au, v⟩ ≤
∫

QT

|∇u||∇v| dxdt +
∫

ΣT

|γ(t, σ, u)||v| dσdt. (3.6)

Using Hölder’s inequality and assumption (A2), it is straightforward to get

⟨Au, v⟩ ≤ ∥∇u∥L2(QT )∥∇v∥L2(QT ) + γ1

∫

ΣT

|v| dσdt + γ1

∫

ΣT

|u|θ|v| dσdt.

Applying Hölder’s inequality again, one obtains the following

⟨Au, v⟩ ≤ ∥∇u∥L2(QT )∥∇v∥L2(QT ) + C∥v∥L2(ΣT ) + γ1∥v∥L2(ΣT )∥|u|θ∥L2(ΣT ).

According to the trace theorem (see for example [17, Theorem 4.1.3]), and since
1 ≤ θ < N+2

N < N
N−2 , we obtain

⟨Au, v⟩ ≤ ∥u∥V∥v∥V + C∥v∥V + C∥v∥V∥u∥θ
V ,

hence

∥Au∥V∗ ≤ C max
{

∥u∥V , ∥u∥θ
V
}

.

By applying the results of Theorems 2.1 and 2.3 from [21], we derive that the operator
A is hemicontinuous.

(b) The operator A is monotone. For any u, û ∈ V, we have

⟨A(u) − A(û), u − û⟩ =
∫

QT

|∇(u − û)|2 dx dt +
∫

ΣT

(γ(t, σ, u) − γ(t, σ, û))(u − û) dσdt.
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By using (2.3), we conclude that

⟨A(u) − A(û), u − û⟩ ≥ 0,

which proves that A is a monotone operator.
(c) The operator A is coercive. Thanks to the hypothesis (A2), we have

⟨Au, u⟩ :=
∫

QT

|∇u|2 dx dt +
∫

ΣT

γ(t, σ, u)u dσdt ≥ min(1, γ0)∥u∥2
V .

Therefore,

lim
∥u∥V →∞

⟨Au, u⟩
∥u∥V

≥ lim
∥u∥V →∞

min(1, γ0)∥u∥V = ∞,

which is equivalent to saying that A is a coercive operator.
With the help of Proposition 2.1, we conclude the existence of u ∈ D (L) solution

to the abstract equation (3.5). Therefore, we obtain the existence of a weak solution to
the parabolic equation (3.1).

3.1.2. Uniqueness result
Let u1 and u2 be two weak solutions of (3.1). By taking the difference between the
weak formulations (3.4) of u1 and u2, respectively, we obtain that, for all φ ∈ V,

T∫

0

〈
∂(u1 − u2)

∂t
, φ

〉
dt +

∫

QT

(∇u1 − ∇u2)∇φ dx dt

+
∫

ΣT

(γ(t, σ, u1) − γ(t, σ, u2))φ dσdt = 0.

(3.7)

Let us take φ = (u1 − u2)χ(0,t) as a test function in the weak formulation (3.7).
By using the monotony assumption (2.3), one gets

t∫

0

〈
∂(u1 − u2)

∂t
, u1 − u2

〉
dt +

∫

Qt

|∇(u1 − u2)|2dxdt ≤ 0, (3.8)

where Qt := (0, t) × Ω. We deal with left-hand side of (3.8) via the integration by
parts formula, one gets for almost every t ∈ (0, T )

∫

Ω

(u1 − u2)2(t) dx ≤ 0.

Therefore, we get u1 = u2 a.e in QT , which shows that the obtained weak solution u
of (3.1) is unique.
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3.1.3. Energy estimate
In this step, we shall show that every weak solution u of (3.1) satisfies the energy
estimate (3.3). To do this, we start by taking φ = uχ(0,t) in the weak formulation
associated to (3.1) with 0 < t < T . We have

t∫

0

〈
∂u

∂t
, u

〉
dt +

∫

Qt

|∇u|2 dxdt +
∫

Σt

γ(t, σ, u)u dσdt

=
∫

Qt

fu dxdt +
∫

Σt

gu dσdt,

(3.9)

where Σt := (0, t) × ∂Ω. Now we employ assumption (A2) in (3.9) to get
1
2

∫

Ω

u2(t) dt +
∫

Qt

|∇u|2 dxdt + γ0

∫

Σt

|u|2 dσdt

≤
∫

Qt

|fu| dxdt +
∫

Σt

|gu| dσdt.

(3.10)

From Young’s inequality and by applying trace theorem, it follows that
∫

Ω

u2(t) dt ≤
∫

Qt

|f |2 dxdt +
∫

Σt

|g|2 dσdt + C

∫

Qt

|u|2 dxdt. (3.11)

By applying Gronwall’s lemma, we obtain
∫

QT

u2 dxdt ≤ (exp(T ) − 1)
(

∥f∥2
L2(QT ) + ∥g∥2

L2(ΣT )

)
. (3.12)

We substitute the result of (3.12) in (3.11) to get

sup
0≤t≤T

∫

Ω

u2(t) ≤ ∥f∥2
L2(QT ) + ∥g∥2

L2(ΣT )

+ C exp(T )
(

∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
.

(3.13)

Therefore,
∥u∥L∞(0,T ;L2(Ω)) ≤ C(T, Ω)

(
∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
. (3.14)

On the other hand, combining the inequalities (3.10), (3.11) and (3.12) we obtain

min{1, γ0}∥u∥V ≤ C(T, Ω)
(

∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
. (3.15)

In view to the estimates (3.14) and (3.15), we conclude that (3.3) holds, which
completes the proof.
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4. EXISTENCE RESULTS FOR BOUNDED NONLINEARITY

In this section, we study the existence of solutions to problem (1.1) when the
non-linearity G(t, x, u, ∇u) is bounded. We will state the main result of this section in
the following theorem.

Theorem 4.1. Along hypothesis (A2)–(A3), we assume the existence of a nonnegative
function M ∈ L2(QT ) such that for a.e. (t, x) in QT ,

|G(t, x, s, r)| ≤ M(t, x), for all (s, r) ∈ R × RN . (4.1)

Then for any (f, g) ∈ L2(QT ) × L2(ΣT ), problem (1.1) has a weak solution u satisfying

u ∈ W(0, T ), u(0, x) = 0 in L2(Ω),
T∫

0

〈
∂u

∂t
, φ

〉
dt +

∫

QT

∇u∇φ dxdt +
∫

ΣT

γ(t, σ, u)φ dσdt +
∫

QT

G(t, x, u, ∇u)φ dxdt

=
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt,

(4.2)
for all test function φ ∈ V.

4.1. PROOF OF THEOREM 4.1

To establish the result of Theorem 4.1, we propose to use Leray–Schauder topological
degree. As a first step, let us formulate the existence question of weak solutions to (1.1)
into the seeking of a fixed point for a well-posed mapping. Hence, let us consider the
following mapping

H : [0, 1] × V −→ V
(λ, v) 7−→ u,

where u is a weak solution to the following nonlinear parabolic equation





∂u
∂t − ∆u + λG(t, x, v, ∇v) = λf(t, x) in QT ,

u(0, x) = 0 in Ω,
∂u
∂ν + γ(t, σ, u) = λg(t, σ) on ΣT .

(4.3)



On the solvability of some parabolic equations. . . 597

According to hypothesis (4.1), we can notice that the function λG(t, x, v, ∇v) belongs
to L2(QT ). Therefore, the result of Theorem 3.2 assures that for any fixed (λ, v)
in [0, 1] × V, problem (4.3) has a unique weak solution u in the sense that

u ∈ W(0, T ), u(0, x) = 0 in L2(Ω),
T∫

0

〈
∂u

∂t
, φ

〉
dt +

∫

QT

∇u∇φ dxdt +
∫

ΣT

γ(t, σ, u)φ dσdt

+
∫

QT

λG(t, x, v, ∇v)φ dxdt = λ

∫

QT

fφ dxdt + λ

∫

ΣT

gφ dσdt,

(4.4)

for all test function φ ∈ V . Consequently, we derive that the mapping H is well-defined.
In addition, using again the result of Theorem 3.2, we conclude from (3.3) that u the
weak solution of (4.3) satisfies the following energy estimate

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥V ≤ C
[
λ∥G(t, x, v, ∇v)∥L2(QT )

+ λ
(
∥f∥L2(QT ) + ∥g∥L2(ΣT )

)]
.

(4.5)

Using assumption (4.1) with the fact that λ belongs to [0, 1], the inequality (4.5)
becomes

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥V ≤ C
(
∥M∥L2(QT ) + ∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
. (4.6)

Let us mention that inequality (4.6) will play a crucial in the sequel. It will be very
helpful in the proclamation of some interesting properties of the mapping H. As well
known, to apply Leray–Schauder topological degree, we must proceed by following
three steps:
Step 1. The mapping H is continuous. To study the continuity of the mapping H, we
take (λn, vn) a sequence in [0, 1] × V such that (λn, vn) converges strongly to some
(λ, v) in [0, 1] × V. And, we shall prove that H(λn, vn) converges strongly to H(λ, v)
in V. Let us start by setting

un = H(λn, vn), u = H(λ, v). (4.7)

From (4.7), we know that for a fixed n the function un stands to satisfy the following
weak formulation

un ∈ W(0, T ), un(0, x) = 0 in L2(Ω),
T∫

0

〈
∂un

∂t
, φ

〉
dt +

∫

QT

∇un∇φ dxdt +
∫

ΣT

γ(t, σ, un)φ dσdt

+
∫

QT

λnG(t, x, vn, ∇vn)φ dxdt = λn

∫

QT

fφ dxdt + λn

∫

ΣT

gφ dσdt.

(4.8)
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Furthermore, by estimate (4.7), it follows that

∥un∥L∞(0,T ;L2(Ω)) + ∥un∥V ≤ C
(
∥M∥L2(QT ) + ∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
(4.9)

where C is a constant depending only on T, Ω, N and γ0. In view of (4.9), we deduce that
the sequence (un) is bounded in V . Let us return back to estimate the time derivative
∂un

∂t in the space V∗. By taking into account the weak formulation (4.8), we get∣∣∣∣∣∣

T∫

0

〈
∂un

∂t
, φ

〉
dt

∣∣∣∣∣∣
≤
∫

QT

|∇un∇φ| dxdt +
∫

ΣT

|γ(t, σ, un)φ| dσdt

+
∫

QT

|G(t, x, vn, ∇vn)φ| dxdt +
∫

QT

|fφ| dxdt

+
∫

ΣT

|gφ| dσdt.

(4.10)

With the help of (4.1) and assumption (A3), we may use Hölder inequality on the
right-hand side of (4.10). Then

∣∣∣∣∣∣

T∫

0

〈
∂un

∂t
, φ

〉
dt

∣∣∣∣∣∣
≤ ∥∇un∥L2(QT )∥∇φ∥L2(QT )

+ γ1
(
1 + ∥|un|θ∥L2(ΣT )

)
∥φ∥L2(ΣT )

+
(
∥M∥L2(QT ) + ∥f∥L2(QT )

)
∥φ∥L2(QT )

+ ∥g∥L2(ΣT )∥φ∥L2(ΣT ).

(4.11)

Thanks to the trace theorem (see for example [17, Theorem 4.1.3]), and since 1 ≤ s <
N+2

N < N
N−2 , we derive from (4.11) the following inequality

∣∣∣∣∣∣

T∫

0

〈
∂un

∂t
, φ

〉
dt

∣∣∣∣∣∣
≤∥un∥V∥φ∥V + γ1

(
1 + ∥un∥θ

V
)

∥φ∥V

+ C
(
∥M∥L2(QT ) + ∥f∥L2(QT )

)
∥φ∥V

+ C∥g∥L2(ΣT )∥φ∥V ,

(4.12)

where C is a constant independent of n. By using the estimates (4.9) and (4.12),
we conclude that ∂un

∂t is uniformly bounded in V∗. At this stage, we are able to use
the compactness result of (2.2) and therefore there exists a subsequence of (un),
for simplicity denoted again by (un), such that

un → u strongly in L2(QT ) and a.e in QT . (4.13)

In addition, the boundness of (un) in W(0, T ) permits us to conclude the following
weak convergence:

un ⇀ u weakly in W(0, T ). (4.14)
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Furthermore, by the trace theorem (see [22, Theorem 3.4.1]), we get

un → u strongly in L2(ΣT ) and a.e in ΣT . (4.15)

By employing the growth assumption (2.5) and (4.15), it results that

γ(t, σ, un) → γ(t, σ, u) strongly in L2(ΣT ) and a.e in ΣT . (4.16)

Let us recall that (vn) converges strongly to v in V. This fact allows us to have the
following almost everywhere convergence:

(vn, ∇vn) → (v, ∇v) a.e in QT . (4.17)

In accordance with (4.1) and (4.17), one may apply the Lebesgue dominated conver-
gence theorem to obtain

λnG(t, x, vn, ∇vn) → λG(t, x, v, ∇v) strongly in L2(QT ) and a.e in QT . (4.18)

As we can see, the continuity of the mapping H requires the strong convergence of
(∇un) in L2(QT )N . To do so, we take the difference between the two weak formations
(4.4) and (4.8) with φ = (un − u) as a test function. Then we have

T∫

0

〈
∂(un − u)

∂t
, (un − u)

〉
dt +

∫

QT

|∇un − ∇u|2 dxdt

+
∫

ΣT

(γ(t, σ, un) − γ(t, σ, u)) (un − u) dσdt

+
∫

QT

(λnG(t, x, vn, ∇vn) − λG(t, x, v, ∇v)) (un − u) dxdt,

= (λn − λ)
∫

QT

f(un − u) dxdt + (λn − λ)
∫

ΣT

g(un − u) dσdt.

(4.19)

With the help of the Hölder inequality, we derive from (4.19) the following inequality

1
2

∫

Ω

(un − u)2(T ) dx +
∫

QT

|∇un − ∇u|2 dxdt

≤ ∥γ(t, σ, un) − γ(t, σ, u)∥L2(ΣT )∥un − u∥L2(ΣT )

+ ∥λnG(t, x, vn, ∇vn) − λG(t, x, v, ∇v)∥L2(QT )∥un − u∥L2(QT )

+ 2∥f∥L2(QT )∥un − u∥L2(QT ) + 2∥g∥L2(ΣT )∥un − u∥L2(ΣT ).

(4.20)

Thanks to the strong convergences (4.13), (4.15), (4.16) and (4.18), we pass to the
limit in (4.20) as n → ∞, one obtains

lim
n→∞

∫

QT

|∇un − ∇u|2 dxdt ≤ 0.
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This proves that

∇un → ∇u strongly in L2(QT )N and a.e in QT . (4.21)

Therefore, by (4.13) and (4.21), we derive that

un → u strongly in V. (4.22)

The obtained convergences (4.14), (4.16), (4.18) allow us to pass to the limit in all the
terms of (4.8). By the fact that problem (4.3) has a unique solution, one may deduce
that the mapping H is continuous.
Step 2. The mapping H is compact. Here, we aim to show that H is compact. To do so,
let us take (λn, vn) a bounded sequence in [0, 1] × V , we shall prove that (H(λn, vn)) is
relatively compact in V. We start by setting un = H(λn, vn)). By following the same
reasoning as in the continuity step, we can easy to establish that (un) is bounded in
W(0, T ). Therefore, we can deduce the existence of a measurable function u : QT → R
and a sub-sequence of (un) denoted again by (un) for simplicity such that

un → u strongly in L2(QT ) and a.e in QT . (4.23)
un → u strongly in L2(ΣT ) and a.e in ΣT . (4.24)

γ(t, σ, un) → γ(t, σ, u) strongly in L2(ΣT ) and a.e in ΣT . (4.25)

As can be seen, the compactness of the mapping H requires establishing that (∇un)
converges strongly to ∇u in L2(QT )N . This convergence makes the difference between
the compactness proof of H and that of the continuity which we have already established
in step 1. At this stage, we do not have any information about the almost everywhere
convergence of (vn, ∇vn) in QT , this fact presents major difficulties. And so, we cannot
deal with the terms G(t, x, vn, ∇vn) by following the same argument of obtaining
(4.18). To overcome these difficulties, let us remark that from [18, 27] (see also [1]
and [15] for Dirichlet boundary case), we can derive that

∇un → ∇u a.e in QT . (4.26)

Then, to prove that (∇un) converges to ∇u strongly in L2(QT )N , we subtract the
weak formulation (4.8) for different sequence indexes n and m with φ = (un − um) as
a test function. One obtains

T∫

0

〈
∂(un − um)

∂t
, (un − um)

〉
dt +

∫

QT

|∇un − ∇um|2 dxdt

+
∫

ΣT

(γ(t, σ, un) − γ(t, σ, um)) (un − um) dσdt

+
∫

QT

(λnG(t, x, vn, ∇vn) − λmG(t, x, vm, ∇vm)) (un − um) dxdt,

= (λn − λm)
∫

QT

f(un − um) dxdt + (λn − λm)
∫

ΣT

g(un − um) dσdt.

(4.27)
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To deal with (4.27), we use (4.1) with Hölder’s inequality. It results that
1
2

∫

Ω

(un − um)2(T ) dx +
∫

QT

|∇un − ∇um|2 dxdt

≤ ∥γ(t, σ, un) − γ(t, σ, um)∥L2(ΣT )∥un − um∥L2(ΣT )

+ 2∥M∥L2(QT )∥un − um∥L2(QT )

+ 2∥f∥L2(QT )∥un − um∥L2(QT )

+ 2∥g∥L2(ΣT )∥un − um∥L2(ΣT ).

(4.28)

By employing the convergences (4.23), (4.24), (4.25) and (4.26), we may use Fatou’s
Lemma to pass to the limit in (4.28) as m → ∞, one gets

∫

QT

|∇un − ∇u|2 dxdt

≤ ∥γ(t, σ, un) − γ(t, σ, u)∥L2(ΣT )∥un − u∥L2(ΣT )

+ 2∥M∥L2(QT )∥un − u∥L2(QT )

+ 2∥f∥L2(QT )∥un − u∥L2(QT )

+ 2∥g∥L2(ΣT )∥un − u∥L2(ΣT ).

(4.29)

Applying again the convergences(4.23), (4.24) and (4.25) to pass to the limit in (4.29)
as n → ∞, we arrive at

lim
n→∞

∫

QT

|∇un − ∇u|2 dxdt ≤ 0,

which is equivalent to say that ∇un converges strongly to ∇u in L2(QT )N . Conse-
quently, the mapping H is compact.
Step 3. Existence of radius R such that deg(u − H(λ, u), BR, 0) = 1. The purpose
of this step is the construction of a nonnegative radius R independent of λ such
that u ̸= H(λ, u) for any u ∈ ∂BR, λ ∈ [0, 1]. To do this, we take u ∈ V such that
u = H(λ, u) for some λ ∈ [0, 1]. Hence, the measurable function u subjects to the
following weak formulation

u ∈ W(0, T ), u(0, x) = 0 in L2(Ω),
T∫

0

〈
∂u

∂t
, φ

〉
dt +

∫

QT

∇u∇φ dxdt +
∫

ΣT

γ(t, σ, u)φ dσdt

+
∫

QT

λG(t, x, u, ∇u)φ dxdt = λ

∫

QT

fφ dxdt + λ

∫

ΣT

gφ dσdt,

(4.30)

for all test function φ ∈ V. Furthermore, by taking into account assumption (4.1),
we deduce from (4.6) that u satisfies the following estimate

∥u∥L∞(0,T ;L2(Ω)) + ∥u∥V ≤ C
(
∥M∥L2(QT ) + ∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
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where C is a constant independent of λ. Then, by choosing

R > C
(
∥M∥L2(QT ) + ∥f∥L2(QT ) + ∥g∥L2(ΣT )

)
,

we ensure that the Leray–Schauder topological degree deg(Id − H(λ, ·), BR, 0) is well
defined in the ball BR. In addition, we derive that the Leray–Schauder topological
degree satisfies the following homotopy invariance property

deg(Id − H(1, ·), BR, 0) = deg(Id − H(0, ·), BR, 0). (4.31)

To conclude, we need to check that deg(Id − H(1, ·), BR, 0) ̸= 0. To this done, we con-
sider ζ = H(0, ζ), which means that ζ satisfies for all test function φ ∈ V the following
weak formulation

ζ ∈ W(0, T ), ζ(0, x) = 0 in L2(Ω)
T∫

0

〈
∂ζ

∂t
, φ

〉
dt +

∫

QT

∇ζ∇φ dxdt +
∫

ΣT

γ(t, σ, ζ)φ dσdt = 0.
(4.32)

By choosing φ = ζ in (4.32), we obtain
1
2

∫

Ω

ζ2(T ) dx +
∫

QT

|∇ζ|2 dxdt +
∫

ΣT

γ(t, σ, ζ)ζ dσdt = 0. (4.33)

By employing (A2), we deduce from (4.33) the following inequality
1
2

∫

Ω

ζ2(T ) dx + min{1, γ0}∥ζ∥2
V ≤ 0,

which implies that ζ = 0 a.e in QT . Therefore, we conclude that

deg(Id − H(0, ·), BR, 0) = 1.

By combining this result with that of (4.31), we arrive at

deg(Id − H(1, ·), BR, 0) ̸= 0.

Hence, a direct application of Leray–Schauder topological degree (see, e.g., [25])
permits us to derive the existence of u a weak solution to (1.1) that satisfies the weak
formulation (4.2).

5. EXISTENCE RESULTS IN L1 FRAMEWORK

In this section, we study the existence of weak solution to (1.1) when the given data
(f, g) are nonnegative functions belonging to L1(QT )×L1(ΣT ). Furthermore, we assume
that the nonlinearity G(t, x, u, ∇u) satisfies general growth conditions which are:

G(t, x, s, r)s ≥ 0, (5.1)

|G(t, x, s, r)| ≤ µ(|s|)
(

L(t, x) + ∥r∥2
)

, (5.2)
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for all (s, r) in R × RN and for a.e (t, x) in QT . Where L is a nonnegative function
belonging to L1(QT ) and µ : R+ → R+ is a nondecreasing continuous function.

As a fisrt step, we propose to define the notion of weak solution to (1.1) for the L1

setting.

Definition 5.1. A measurable function u : QT → R is said to be a weak solution to
problem (1.1) if it satisfies the following conditions:

u ∈ C
(
[0, T ], L1(Ω)

)
∩ L1(0, T ; W 1,1(Ω)), G(t, x, u, ∇u) ∈ L1(QT ),

−
∫

QT

u
∂φ

∂t
dxdt +

∫

QT

∇u∇φ dxdt +
∫

ΣT

γ(t, σ, u)φ dσdt

+
∫

QT

G(t, x, u, ∇u)φ dxdt =
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt,

(5.3)

for all test function φ ∈ C1 (QT

)
such that φ(T, ·) = 0.

At this stage, we state the main result of this section.

Theorem 5.2. We assume that (A1)–(A3), (5.1) and (5.2) hold and T > 0 fixed.
Then the problem (1.1) has a weak solution u satisfying 0 ≤ u ≤ w a.e. in QT where
w is the weak solution to (6.2) given in (Lemma 6.2, Appendix).

In what follows, two typical examples are presented in which the various assumptions
on the nonlinearities G and γ of Theorem 5.2 are satisfied.

Example 5.3. As the first example, we take:

γ(t, σ, s) = s|s|θ−2a(t, σ) for all s ∈ R and for a.e (t, σ) ∈ ΣT ,

G(t, x, s, r) = arctan(s)
(
1 + ∥r∥2) for all (s, r) ∈ R × RN and for a.e (t, x) ∈ QT ,

where 1 ≤ θ < N+2
N and a is a measurable function belonging to L∞(ΣT ) such that

0 < a ≤ a(t, σ) ≤ a for a.e (t, σ) ∈ ΣT .

Example 5.4. For the second example, we consider

γ(t, σ, s) = sa(t, σ) for all s ∈ R and for a.e (t, σ) ∈ ΣT ;
G(t, x, s, r) = b(t, x)s

(
1 + ∥r∥2) for all (s, r) ∈ R × RN and for a.e (t, x) ∈ QT ,

where a is the function stated as above and b is a measurable function belonging to
L∞(ΣT ) such that 0 < b ≤ b(t, x) ≤ b for a.e (t, x) ∈ QT .

Remark 5.5. Note that in the first example, we chose a(t, σ) ≡ 0, hence the boundary
conditions associated with (1.1) are those of inhomogeneous Neumann. In the second ex-
ample, choosing a(t, σ) ̸= 0, the boundary conditions are Robin’s inhomogeneous ones.
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5.1. PROOF OF THEOREM 5.2

In order to prove Theorem 5.2, we start by introducing an approximate scheme with
a more regular data, namely in L2, for which we prove the existence of weak solutions,
using the previous Theorem 4.1. Finally, through some a-priori estimates that we
obtain by adapting some very interesting techniques, one proves that the solution of the
approximated problem converges indeed to the solution of the proposed problem (1.1).

5.1.1. Approximating scheme
Let w be the nonnegative weak solution to (6.2). For all n ∈ N∗, we introduce
wn = τn(w) and we define the Carathédory function Gn by

Gn(t, x, s, ξ) = G(t, x, s, ξ)
1 + 1

n |G(t, x, s, ξ)| .1{w≤n} a.e in QT .

After that, we set

fn = τn(f).1{w≤n}, gn = τn(g).1{w≤n},

f̃n = f.1{w≤n}, g̃n = gn.1{w≤n}.

It is clear that the sequences (fn), gn) are nonnegative and satisfying

0 ≤ fn ≤ f, (fn) → f in L1(QT ) and ∥fn∥L1(QT ) ≤ ∥f∥L1(QT ), (5.4)
0 ≤ gn ≤ g, (gn) → g in L1(ΣT ) and ∥gn∥L1(ΣT ) ≤ ∥g∥L1(ΣT ). (5.5)

Now, we introduce the approximate problem of (1.1) as follows:




∂un

∂t − ∆un + Gn(t, x, un, ∇un) = fn(t, x) in QT ,

un(0, x) = 0 in Ω,
∂un

∂ν + γ(t, σ, un) = gn(t, σ) on ΣT .

(5.6)

As a first step, we shall ensure the existence of a weak solution to the approached
problem (5.6). This is the objective of the following lemma.
Lemma 5.6. For any n ∈ N∗, problem (5.6) has a weak solution un in the sense that

un ∈ W(0, T ), un(0, x) = 0 in L2(Ω),
T∫

0

〈
∂un

∂t
, φ

〉
dt +

∫

QT

∇un∇φ dxdt +
∫

ΣT

γ(t, σ, un)φ dσdt

+
∫

QT

Gn(t, x, un, ∇un)φ dxdt =
∫

QT

fnφ dxdt +
∫

ΣT

gnφ dσdt,

(5.7)

for all test function φ ∈ V. Moreover, we have

0 ≤ un ≤ wn ≤ w. (5.8)
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Proof. To establish the result of Lemma 5.6, we remark that the nonlinearity is bounded
by n. Then, by using the existence result of Theorem 3.2, we derive that for any
n ∈ N∗ problem (5.6) has a weak solution un which satisfies the weak formulation (5.7).
It remains to show that un satisfies (5.8). To do so, we start by proving that un is
nonnegative. Let us take j′

ε(un) as a test function in (5.7). Then by integrating over Qt,
we obtain

∫

Ω

jε(un(t, x)) dx +
∫

Qt

|∇un|2j′′
ε (un) dxdt +

∫

Qt

Gn (t, x, un, ∇un) j′
ε(un) dxdt

+
∫

Σt

γ (t, σ, un) j′
ε(un) dσdt =

∫

Qt

fnj′
ε(un) dxdt +

∫

Σt

gnj′
ε(un) dσdt.

The convexity of jε implies
∫

Qt

|∇un|2 j′′
ε (un) dxdt ≥ 0.

For the other terms, we use the fact that j′
ϵ(un) = 0 on the set where un ≥ 0.

We therefore have
∫

Ω

jε(un(t, x)) dx +
∫

Qt∩[un<0]

Gn (t, x, un, ∇un) j′
ε(un) dxdt

+
∫

Σt∩[un<0]

γ (t, σ, un) j′
ε(un) dσdt ≤

∫

Qt

fnj′
ε(un) dxdt +

∫

Σt

gnj′
ε(un) dσdt.

(5.9)

By letting ϵ → 0 in (5.9), one obtains
∫

Ω

u−
n (t, x) dx −

∫

Qt∩[un<0]

Gn (t, x, un, ∇un) dxdt

−
∫

Σt∩[un<0]

γ (t, σ, un) dσdt ≤ −
∫

Qt

fn dxdt −
∫

Σt

gn dσdt ≤ 0.

(5.10)

By using the sign conditions (2.4) and (5.1), the inequality (5.10) becomes
∫

Ω

u−
n (t, x) dx ≤ 0.

This proves that un ≥ 0 almost everywhere in QT . As a result, we can derive from the
sign conditions (2.4) and (5.1) that

γ(t, σ, un) ≥ 0, (5.11)
Gn(t, x, un, ∇un) ≥ 0. (5.12)



606 Laila Taourirte, Abderrahim Charkaoui, and Nour Eddine Alaa

Now, we are in the setting to show that un ≤ wn. To do this, we use a simple
computation to seek the equation satisfied by wn, we have

∂twn = ∂tw.τ ′
n(w) = ∂tw.1{w≤n},

∇wn = ∇w.τ ′
n(w) = ∇w.1{w≤n},

∆wn = ∆w.1{w≤n} + |∇w|2.τ ′′
n (w).

Since 0 ≤ −τ ′′
n (s) ≤ C(n) and by using the fact that w is a weak solution to (6.2),

it follows that wn satisfies




∂wn

∂t − ∆wn ≥ f̃n(t, x) in QT ,

wn(0, ·) = 0 in Ω,
∂wn

∂ν + γ(t, σ, w).1{w≤n} = g̃n(t, σ) on ΣT .

(5.13)

Thus, we can directly deduce that (un − wn) verifies the following weak formulation:
T∫

0

〈
∂(un − wn)

∂t
, φ

〉
dt +

∫

QT

∇(un − wn)∇φ dxdt

+
∫

ΣT

(
γ(t, σ, un) − γ(t, σ, w).1{w≤n}

)
φ dσdt

+
∫

QT

Gn(t, x, un, ∇un)φ dxdt ≤
∫

QT

(fn − f̃n)φ dxdt +
∫

ΣT

(gn − g̃n)φ dσdt,

(5.14)

for all nonnegative test function φ ∈ V. Let us choose (un − wn)+ as a test function
in (5.14). By employing (5.12), one gets

∫

Ω

Π(un − wn) dx +
∫

QT

|∇(un − wn)+|2 dxdt

+
∫

ΣT

(
γ(t, σ, un) − γ(t, σ, w).1{w≤n}

)
(un − wn)+ dσdt

≤
∫

QT

(fn − f̃n)(un − wn)+ dxdt +
∫

ΣT

(gn − g̃n)(un − wn)+ dσdt,

(5.15)

where Π(y) =
∫ y

0 s+ ds ≥ 0. Let us remark that fn − f̃n ≤ 0 and gn − g̃n ≤ 0. Then
the inequality (5.15) is reduced to

∫

QT

|∇(un − wn)+|2 dxdt

+
∫

ΣT

(
γ(t, σ, un) − γ(t, σ, w).1{w≤n}

)
(un − wn)+ dσdt ≤ 0.

(5.16)
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Let us remark that we can split the second integral as follows:
∫

ΣT

(
γ(t, σ, un) − γ(t, σ, w).1{w≤n}

)
(un − wn)+ dσdt

=
∫

ΣT ∩[w≤n]

(γ(t, σ, un) − γ(t, σ, wn)) (un − wn)+ dσdt

+
∫

ΣT ∩[w>n]

(γ(t, σ, un)) (un − wn)+ dσdt.

(5.17)

From (5.12), (5.16) and (5.17), we deduce that
∫

QT

|∇(un − wn)+|2 dxdt

+
∫

ΣT ∩[w≤n]

(γ(t, σ, un) − γ(t, σ, wn)) (un − wn)+ dσdt ≤ 0.

(5.18)

We can deduce from inequality (5.18) the existence of a constant c such that
(un − wn)+ = c a.e. in QT and by using again (5.18) and assumption (2.3), we arrive
at (un − wn)+ = 0 a.e. in QT . This is equivalent to say that un ≤ wn a.e in QT .

5.1.2. A priori estimates
In the sequel, we shall proceed to derive some adequate a-priori estimates on the
solution un, and the nonlinearity Gn(t, x, un, ∇un), to eventually prove that, un-
der appropriate additional assumptions, (un) converges to a solution of (1.1) as n
tends to ∞.

Lemma 5.7. Let un be the weak solution to the approximate problem (5.6). Then

(i)
sup

0≤t≤T

∫

Ω

|un(t, x)| dx ≤ C,

(ii)
∥Gn(t, x, un, ∇un)∥L1(QT ) + ∥γ(t, σ, un)∥L1(ΣT ) ≤ C,

(iii) ∫

QT

|∇Tk(un)|2 dx ≤ Ck.

Proof. (i) Let us consider the equation satisfied by un over QT . We have

∂un

∂t
− ∆un + Gn(t, x, un, ∇un) = fn in QT . (5.19)
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Using the results of (5.4) and (5.12), we get
∂un

∂t
− ∆un ≤ f in QT .

Next, we integrate over Qt for all t ∈ (0, T ) to obtain
∫

Ω

un(t, x) dxdt +
∫

Σt

γ(t, x, un) dσdt ≤
∫

QT

f dxdt +
∫

ΣT

g dσdt.

Thanks to (5.11), we obtain

sup
0≤t≤T

∫

Ω

|un(t, x)| dx ≤ ∥f∥L1(QT ) + ∥g∥L1(ΣT ).

(ii) We consider again the equation satisfied by un, we have
∂un

∂t
− ∆un + Gn(t, x, un, ∇un) = fn in QT . (5.20)

By integrating over QT , we get the following equality
∫

Ω

un(T, x) dx +
∫

QT

Gn(t, x, un, ∇un) dxdt +
∫

ΣT

γ(t, σ, un) dσdt

=
∫

QT

fn dxdt +
∫

ΣT

gn dσdt,

which yields

∥Gn(t, x, un, ∇un)∥L1(QT ) + ∥γ(t, σ, un)∥L1(ΣT ) ≤ ∥f∥L1(QT ) + ∥g∥L1(ΣT ) .

(iii) Multiplying the equation (5.19) by the truncated function Tk (un), and inte-
grating on QT to obtain

∫

QT

∂Sk (un)
∂t

dxdt +
∫

QT

|∇Tk(un)|2 dxdt

+
∫

QT

Gn (t, x, un, ∇un) Tk (un) dxdt +
∫

ΣT

γ (t, σ, un) Tk (un) dσdt

=
∫

QT

Tk (un) fn dxdt +
∫

ΣT

Tk(un)gn dσdt.

(5.21)

Thanks to (5.8), (5.11), (5.12) and the fact that un(0) = 0, we get
∫

Ω

Sk(un(T )) dxdt +
∫

QT

|∇Tk(un)|2 dxdt ≤ k
(

∥f∥L1(QT ) + ∥g∥L1(ΣT )

)
,

which completes the proof.
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Remark 5.8. With the help of (ii) from Lemma 5.7, one can use the compactness
results of Lemma 6.1. Then, we derive the existence of a subsequence of (un), for
simplicity again denoted by (un), such that

un −→ u strongly in L1(0, T, W 1,1(Ω)),
(un, ∇un) −→ (u, ∇u) a.e. in QT .

As a result, one may deduce that

Tk(un) −→ Tk(u) a.e in QT ,

γ(t, σ, un) −→ γ(t, σ, u) a.e in ΣT .

Furthermore, by employing (2.3), (2.5) and (5.8), one may apply the Lebesgue conver-
gence theorem to get

Tk(un) −→ Tk(u) strongly in L2(QT ), (5.22)
γ(t, σ, un) −→ γ(t, σ, u) strongly in L1(ΣT ). (5.23)

Lemma 5.9. Let un be the sequence defined as above. Then, we have

lim
k 7→+∞

sup
n

∫

[un>k]

|Gn (t, x, un∇un)| dxdt = 0.

Proof. From relation (5.21), we derive
∫

QT

Gn (t, x, un, ∇un) Tk (un) dxdt ≤
∫

QT

Tk (un) fn dxdt +
∫

ΣT

Tk(un)gn dσdt.

Then for every 0 < M < k, we have

k

∫

[un>k]

Gn (t, x, un∇un) dxdt ≤ k




∫

QT ∩[un>M ]

fn dxdt +
∫

ΣT ∩[un>M ]

gn dσdt




+ M




∫

QT ∩[un≤M ]

fn dxdt +
∫

ΣT ∩[un≤M ]

gn dσdt


 .

Hence
∫

[un>k]

Gn (t, x, un, ∇un) dxdt ≤



∫

QT

fχ[un>M ] dxdt +
∫

ΣT

gχ[un>M ] dσdt




+ M

k



∫

QT

f dxdt +
∫

ΣT

g dσdt


 .
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To finally obtain the sought result, we need to show that

lim
k 7→+∞

sup
n



∫

QT

fχ[un>M ] dxdt +
∫

ΣT

gχ[un>M ] dσdt


 = 0.

To this aim, we shall use (5.8). We get

| [un > M ] | ≤ 1
M

∥un∥L1(QT ) ≤ 1
M

∥w∥L1(QT )

whence
lim

M 7→+∞
sup

n
| [un > M ] | = 0.

Since (f, g) ∈ L1 (QT ) × L1 (ΣT ), then is equi-integrable. Hence for each ϵ > 0 there
exists (δ1, δ2) such that for all mesurable E1 ⊂ QT and E2 ⊂ ΣT we have

|E1| < δ1,

∫

E1

f dxdt ≤ ϵ

3 ,

|E2| < δ2,

∫

E2

g dσdt ≤ ϵ

3 .

According to the previous result, we obtain that for each ϵ > 0, there exists Mϵ such
that for all M ≥ Mϵ

sup
n



∫

QT

fχ[un>M ] dxdt +
∫

ΣT

gχ[un>M ] dσdt


 ≤ 2ϵ

3 .

Choosing M = Mϵ and letting k tend to infinity, we obtain

lim
k 7→+∞

sup
n




∫

[un>k]

Gn (t, x, un, ∇un) dxdt


 = 0.

5.1.3. Strong convergence of truncations
This section takes interest in proving the strong convergence of (Tk (un)) in
L2 (0, T ; H1(Ω)

)
. We have the following result:

Lemma 5.10. Let (un) be the sequence defined as above. Then, we have

(Tk (un)) → Tk(u) strongly in L2 (0, T ; H1(Ω)
)

,

for every fixed k > 0.



On the solvability of some parabolic equations. . . 611

Proof. The proof will be done by following steps.

Step 1. First, let us take a smooth approximation of Tk(u) denoted Tk(u)ν that has
the following properties:

{
(Tk(u)ν)t = ν (Tk(u) − Tk(u)ν) , |Tk(u)ν | ⩽ k,
Tk(u)ν → Tk(u) strongly in L2 (0, T ; H1(Ω)

)
, as ν tends to infinity.

(5.24)

In all what follows, we will denote by ω(n, ν, h) all quantities (possibly different) such
that

lim
h→+∞

lim
ν→+∞

lim
n→+∞

ω(n, ν, h) = 0. (5.25)

We take φλ(un − Tk(u)ν)− as a test function in (5.7) with φλ(s) = seλs2 , one gets

T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt +

∫

QT

∇un∇φλ(un − Tk(u)ν)− dxdt

+
∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)− dσdt +
∫

QT

Gn(t, x, un, ∇un)φλ(un − Tk(u)ν)− dxdt

=
∫

QT

fnφλ(un − Tk(u)ν)− dxdt +
∫

ΣT

gnφλ(un − Tk(u)ν)− dσdt.

(5.26)

It follows that

∫

[un≤Tk(u)ν ]

(∇un − ∇(Tk(u)ν)) ∇ (un − Tk(u)ν) φ′
λ (un − Tk(u)ν)−

dxdt

≤ −
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt −

∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt

+
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt −

∫

QT

∇Tk(u)ν∇φλ (un − Tk(u)ν)−
dxdt

+
∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)− dσdt

+
∫

QT

Gn(t, x, un, ∇un)φλ(un − Tk(u)ν)− dxdt.

(5.27)
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Now, since (Tk(u)ν) is bounded by k, then φλ(un − Tk(u)ν)− ≡ 0 on the set where
un > k. Hence

∫

QT

∇(Tk(u)ν)∇ (un − Tk(u)ν)−
φ′

λ (un − Tk(u)ν)−
dxdt

=
∫

QT

∇(Tk(u)ν)∇ (Tk(un) − Tk(u)ν) φ′
λ (un − Tk(u)ν)−

dxdt.

Passing to the limit via Lebesgue’s convergence theorem, we obtain

lim
n→+∞

∫

QT

∇(Tk(u)ν)∇ (un − Tk(u)ν)−
φ′

λ (un − Tk(u)ν)−
dxdt

=
∫

QT

∇(Tk(u)ν)∇ (Tk(u) − Tk(u)ν) φ′
λ (u − Tk(u)ν)−

dxdt.

Recalling that (Tk(u)ν) → Tk(u) strongly in L2 (0, T ; H1(Ω)
)

and a.e. in QT , one gets

∫

QT

∇(Tk(u)ν)∇ (un − Tk(u)ν)−
φ′

λ (un − Tk(u)ν)−
dxdt = ω(n, ν).

Now, using (5.27), we obtain

∫

[un≤Tk(u)ν ]

(∇un − ∇(Tk(u)ν)) ∇ (un − Tk(u)ν) φ′
λ (un − Tk(u)ν)−

dxdt

≤ −
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt −

∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt

+
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt +

∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)− dσdt

+
∫

QT

Gn(t, x, un, ∇un)φλ(un − Tk(u)ν)− dxdt + ω(n, ν).

(5.28)
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Since φλ(un − Tk(u)ν)− ≡ 0, if un > k, we also have
∫

QT

|∇un|2φλ(un − Tk(u)ν)−dxdt

≤
∫

QT

∇un∇ (un − Tk(u)ν) φλ(un − Tk(u)ν)−dxdt

+
∫

QT

∇un∇Tk(u)νφλ(un − Tk(u)ν)−dxdt

≤
∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2φλ(un − Tk(u)ν)−dxdt

+
∫

QT

∇Tk(un)∇Tk(u)νφλ(un − Tk(u)ν)−dxdt

+
∫

QT

∇Tk(u)ν∇ (un − Tk(u)ν) φλ(un − Tk(u)ν)−dxdt.

Recalling the convergence of (Tk(u)ν) to Tk(u) in L2 (0, T ; H1(Ω)
)
, as well as the

convergence of (Tk(un)) to Tk(u) weakly in L2 (0, T ; H1(Ω)
)

and the fact that
φλ (u − Tk(u))− ≡ 0. We find, as n and ν tend to infinity,

∫

QT

|∇un|2φλ(un − Tk(u)ν)−dxdt

≤
∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2φλ(un − Tk(u)ν)−dxdt + ω(n, ν).

And so, (5.28) becomes
∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2φ
′
λ(un − Tk(u)ν)−dxdt

≤
∫

QT

µ(k)|∇un|2φλ(un − Tk(u)ν)−dxdt

+ ω(n, ν) +
∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)−dσdt

+
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt

−
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt −

∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt,
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hence
∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2[φ
′
λ − µ(k)φλ]dxdt

≤ ω(n, ν) +
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt

+
∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)−dσdt −
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt

−
∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt.

Choosing λ large enough such that φ
′
λ(s) − µ(k)φλ(s) ≥ α0 we obtain what follows:

α0

∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2dxdt

≤ ω(n, ν) +
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt

+
∫

ΣT

γ(t, σ, un)φλ(un − Tk(u)ν)−dσdt −
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt

−
∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt.

(5.29)

Recalling the convergence (5.23), as well as the convergence of φλ (un − Tk(u)ν)− to
φλ (u − Tk(u)ν)− as n tends to infinity, we obtain

∫

ΣT

γ (t, σ, un) φλ (un − Tk(u)ν)−
dσdt = ω(n, ν). (5.30)

In the same way, one may use the convergence results of (5.4) and (5.5) to deduce that
∫

QT

fnφλ (un − Tk(u)ν)−
dxdt = ω(n, ν), (5.31)

∫

ΣT

gnφλ (un − Tk(u)ν)−
dσdt = ω(n, ν). (5.32)
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By recapping (5.29), (5.30), (5.31) and (5.32), one obtains

α0

∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2dxdt ≤ ω(n, ν) +
T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt.

(5.33)
On the other hand, by following the same idea of [26], one has no difficulty verifying that

T∫

0

〈
∂un

∂t
, φλ(un − Tk(u)ν)−

〉
dt ≤ ω(n, ν, h). (5.34)

Using (5.34), inequality (5.33) becomes
∫

[un≤Tk(u)ν ]

|∇un − ∇Tk(u)ν |2dxdt ≤ ω(n, ν).

Step 2. Closely following the technique of [26], we choose

Ψn = T2k (un − Th (un) + Tk (un) − Tk(u)ν) ,

as a test function in (5.7), with h > k > 0. We have

T∫

0

〈
∂un

∂t
, Ψn

〉
dt +

∫

QT

∇un∇Ψndxdt +
∫

ΣT

γ(t, σ, un)Ψndσdt

+
∫

QT

Gn(t, x, un, ∇un)Ψndxdt =
∫

QT

fnΨndxdt +
∫

ΣT

gnΨndσdt.

(5.35)

Since Ψn is positive, one may use results of (5.11) and (5.12) to achieve that
∫

ΣT

γ(t, σ, un)Ψndσdt +
∫

QT

Gn(t, x, un, ∇un)Ψndxdt ≥ 0. (5.36)

On the other hand, by a simple changes in the proof of Lemma 2.1 from [26], we can
prove that

T∫

0

〈
∂un

∂t
, Ψn

〉
dt ≥ ω(n, ν, h). (5.37)

Then by using (5.36) and (5.37), equality (5.35) becomes
∫

QT

∇un∇Ψndxdt ≤
∫

QT

fnΨndxdt +
∫

ΣT

gnΨndσdt + ω(n, ν, h). (5.38)
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Now, note that ∇Ψn = 0 if |un| > h + 4k. Let us then set M = h + 4k. We will start
by splitting the first integral on the left hand side of (5.38) on the sets [|un| > k] and
[|un| ≤ k], we then obtain for n large:

∫

QT

∇un∇Ψndxdt =
∫

QT

∇TM (un)∇Ψndxdt

≥
∫

QT

∇Tk(un).∇ (Tk(un) − Tk(u)ν) −
∫

[|un|>k]

|∇TM (un)||∇Tk(u)ν |.
(5.39)

The last term of the equation (5.39) can be dealt with in the following way:
∫

[|un|>k]

|∇TM (un)||∇Tk(u)ν |dxdt

≤
∫

QT

|∇TM (un)||∇Tk(u)|χ[|un|>k]dxdt

+
∫

[|un|>k]

|∇TM (un)||∇Tk(u)ν − ∇Tk(u)|dxdt,

hence

C1(M)
∫

QT

|∇Tk(u)|χ[|un|>k] + C2(M)
∫

QT

|∇Tk(u)ν − ∇Tk(u)| ≤ w(n, ν, h), (5.40)

where C1(M) and C2(M) are constants depending on M . This implies that
∫

QT

∇Tk(un).∇ (Tk(un) − Tk(u)ν) dxdt ≤
∫

QT

fnΨn +
∫

ΣT

gnΨn + ω(n, ν, h). (5.41)

The other terms of the same equation (5.38) will be dealt with in the following way:
∫

QT

fnΨndxdt =
∫

Q

fT2k (u − Th(u) + Tk(u) − Tk(u)ν) dxdt + ω(n)

=
∫

Q

fT2k (u − Th(u)) dxdt + ω(n, ν),
(5.42)

hence ∫

QT

fnΨndxdt = ω(n, ν, h). (5.43)

In the same way, we deduce that
∫

ΣT

gnΨndσdt = ω(n, ν, h). (5.44)
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Therefore, we can conclude that
∫

QT

|∇Tk(un) − ∇Tk(u)|2 ≤ ω(n, ν, h) −
∫

QT

∇Tk(u). (∇Tk(un) − ∇Tk(u)) .

Since (Tk (un)) converges to Tk(u) weakly in L2 (0, T ; H1(Ω)
)
. Letting first n tend to in-

finity, then respectively ν and h, we finally obtain that (∇Tk (un)) converges to ∇Tk(u)
strongly in L2 (QT ) for every fixed k > 0, and by using (5.22) we conclude the proof.

5.1.4. Passing to the limit
Let φ ∈ C1 (QT

)
such that φ(T, ·) = 0. Multiplying the first equation of (5.6) by φ,

integrating over QT and applying integration by part formula, one has

−
∫

QT

un
∂φ

∂t
dxdt +

∫

QT

∇un∇φ dxdt +
∫

ΣT

γ(t, σ, un)φ dσdt

+
∫

QT

Gn(t, x, un, ∇un)φ dxdt =
∫

QT

fnφ dxdt +
∫

ΣT

gnφ dσdt.

(5.45)

Our aim is to pass to the limit in (5.45) as n goes to ∞. By using Remark 5.8, we
have the following convergence result

un −→ u strongly in L1(0, T, W 1,1(Ω)), (5.46)
(un, ∇un) −→ (u, ∇u) a.e. in QT , (5.47)
γ(t, σ, un) −→ γ(t, σ, u) strongly in L1(ΣT ) and a.e. in ΣT , (5.48)

Gn(t, x, un, ∇un) −→ G(t, x, u, ∇u) a.e. in QT . (5.49)

Finally, we need now to prove that the convergence in (5.49) holds in L1(QT ). To this
aim, we propose to use the Vitali lemma. Let us then prove that for each ε > 0 there
exists θ > 0 such that

(K ⊂ QT measurable, meas(K) < θ) =⇒
∫

K

|Gn(t, x, un, ∇un)| dxdt < ε ∀n. (5.50)

In order to prove (5.50), we divide the integral as follows:
∫

K

|Gn(t, x, un, ∇un)| dxdt ≤
∫

K∩[un>k]

|Gn(t, x, un, ∇un)| dxdt

+
∫

K∩[un≤k]

|Gn(t, x, un, ∇un)| dxdt := I1 + I2.

The first integral I1 verifies the following inequality

I1 ≤
∫

[un>k]

Gn (t, x, un, ∇un) dxdt,
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Lemma 5.9 insures the existence of k∗ > 0, such that, for all k ⩾ k∗, we have

I1 ≤ ϵ

3 .

As the second integral I2 is concerned, assumption (5.2) implies that for all k ≥ k∗

I2 ≤ µ(k)
∫

K

(
L(t, x) + |∇Tk (un) |2

)
dxdt.

On the one hand, since L ∈ L1 (QT ), then L is equi-integrable in L1 (QT ), hence there
exists δ1 > 0, such that, if |K| ≤ δ1, then

µ(k)
∫

K

L(t, x)dxdt ≤ ϵ

3 .

On the other hand, using Lemma 5.10, the sequence
(
|∇Tk (un) |2

)
n

is equi-integrable
in L1 (QT ). Consequently, there exists δ2 > 0 such that if |K| ≤ δ2, we have

µ(k)
∫

K

|∇Tk (un) |2dxdt ≤ ϵ

3 .

Last but not least, if we choose δ∗ = inf (δ1, δ2) and if |K| ≤ δ∗, we obtain
∫

K

Gn (t, x, un, ∇un) dxdt ≤ ε,

which concludes the proof of our statement.

6. APPENDIX

This section tackles the proof of some interesting results which rely strongly on
parabolic equations with nonlinear boundary conditions.

Lemma 6.1. Let (un) be a weak solution to the following problem:




∂un

∂t − ∆un = κn in QT ,

un(0, x) = 0 in Ω,
∂un

∂ν = τn on ΣT ,

(6.1)

such that the following estimate holds:

∥κn∥L1(QT ) + ∥τn∥L1(ΣT ) ≤ C.
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Then, there exists u in L1(0, T, W 1,1(Ω)) such that, up to a subsequence, the following
convergences are satisfied:

un −→ u strongly in L1(0, T, W 1,1(Ω)),
(un, ∇un) −→ (u, ∇u) a.e. in QT ,

un −→ u strongly in Lr(ΣT ) for all 1 ≤ r <
N + 2

N
.

Proof. The proof of this lemma is more or less classical (we refer the reader to
[10, Lemma 5]; see also [9]).

The above result will be used to deal with the compactness result for the heat
parabolic equation with nonlinear boundary conditions. In the following lemma, we
will establish the existence of a weak solution to (3.1) in the L1 setting.

Lemma 6.2. Assume that (2.5) holds and let (f, g) be two nonnegative measurable
functions belonging to L1(QT ) × L1(ΣT ). Let us consider the following problem:





∂w
∂t − ∆w = f(t, x) in QT

w(0, ·) = 0 in Ω
∂w
∂ν + γ(t, σ, w) = g(t, σ) on ΣT .

(6.2)

Then, problem (6.2) admits a weak solution w in the following sense:

w ∈ C
(
[0, T ], L1(Ω)

)
∩ L1 (0, T, W 1,1(Ω)

)
,

−
∫

QT

w
∂φ

∂t
dxdt +

∫

QT

∇w∇φ dxdt +
∫

ΣT

γ(t, σ, w)φ dσdt

=
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt,

for all φ ∈ C1 (QT

)
such that φ(T, ·) = 0.

Proof. Since f ∈ L1(QT )+ and g ∈ L1(ΣT )+ then we can construct a pair of sequence
(fn) ∈ L2(QT ) and (gn) ∈ L2(ΣT ) such that

0 ≤ fn ≤ f and fn → f strongly in L1(QT ),
0 ≤ gn ≤ g and gn → g strongly in L1(ΣT ).

From the result of Theorem 3.2, we know the existence and uniqueness of wn a weak
solution to the following problem:





∂wn

∂t − ∆wn = fn(t, x) in QT ,
wn(0, ·) = 0 in Ω,
∂un

∂ν + γ(t, σ, wn) = gn(t, σ) on ΣT .
(6.3)
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Since (fn) and (gn) are nonnegative functions, we derive that wn ≥ 0. Furthermore,
by using the fact that fn ≤ f and gn ≤ g, we get

∂wn

∂t
− ∆wn ≤ f. (6.4)

Next, we integrate the first equation of (6.3) over QT , one obtains
∫

Ω

wn(T, x) dx +
∫

ΣT

γ(t, σ, wn) dσdt ≤
∫

QT

f dxdt +
∫

ΣT

g dσdt. (6.5)

Since wn ≥ 0, the following estimate holds:

∥γ(wn)∥L1(ΣT ) ≤ ∥f∥L1(QT ) + ∥g∥L1(ΣT ) .

Then, by using the compactness result of Lemma 6.1, we derive the existence of w in
L1(0, T, W 1,1(Ω)) such that, up to a subsequence, the following conditions are satisfied:

wn −→ u strongly in L1(0, T, W 1,1(Ω)),
(wn, ∇wn) −→ (w, ∇w) a.e. in QT ,

wn −→ w strongly in Lr(ΣT ) for all 1 ≤ r <
N + 2

N
.

Furthermore, by assumption (2.5), we have

|γ(t, σ, r)| ≤ γ1(1 + |r|θ) a.e. (t, σ) in ΣT for all r ∈ R, and 1 ≤ θ <
N + 2

N
.

Hence γ(t, σ, wn) → γ(t, σ, w) strongly in L1(ΣT ) and then passing to the limit in the
weak formulation of (6.3) leads to

−
∫

QT

w
∂φ

∂t
dxdt +

∫

QT

∇w∇φ dxdt +
∫

ΣT

γ(t, σ, w)φ dσdt

=
∫

QT

fφ dxdt +
∫

ΣT

gφ dσdt,

for all φ ∈ C1 (QT

)
such that φ(T, ·) = 0. Hence w solves problem (6.1), which

concludes the proof.
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