PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Static instability of an inverted plate in channel flow: state-space representation and solution approximation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plate-like structures in channel flow are commonly found in engineering. This paper reports a theoretical study on the static aeroelastic instability of an inverted cantilevered plate in an inviscid channel flow through the state space. This study begins with the kernel function of the flow potential determined in the Fourier domain with the help of the mirror image method. Then, the instability equation is derived from the operator theory and transformed in the state space. Finally, with Glauert’s expansion, model functions, and error functions, the instability problem of such a plate has been modeled as a mathematical function approximation problem and solved by the least squares method. The derived instability equation is considered at the continuum level of description, and no approximation appears at the first equation level. The convergence and reliability of the proposed modeling and its solutions approximation are entirely tested, and it can successfully predict the instability boundary, behavior, and the channel effect. Numerical results show that the decreased channel height and asymmetric plate placement in the channel significantly decrease the critical flow velocity. The plate instability modes are close to the plate’s first natural ones and not sensitive to the channel parameters. This conclusion allows further theoretical exploration of a semi-analytical approximation of the instability boundary from the obtained instability equation. The current modeling strategy in a continuum sense may provide a new idea and essential reference for other instability problems.
Rocznik
Strony
695--727
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P.R. China
autor
  • School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P.R. China
autor
  • School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P.R. China
autor
  • School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P.R. China
autor
  • School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, P.R. China
Bibliografia
  • 1. E.H. Dowell, Aeroelasticity of Plates and Shells, Noordhoff International Publishing, Leyden, 1975.
  • 2. M.J. Shelley, J. Zhang, Flapping and bending bodies interacting with fluid flows, Annual Review of Fluid Mechanics, 43, 449–465, 2011, doi: 10.1146/annurev-fluid-121108-145456.
  • 3. E.H. Dowell, Nonlinear oscillations of a fluttering plate II, AIAA Journal, 5, 1856–1862, 1967, doi: 10.2514/6.1967-13.
  • 4. S.D. Algazin, I.A. Kijko, Aeroelastic Vibrations and Stability of Plates and Shells, De Gruyter Studies in Mathematical Physics, 25, 2014, doi: 10.1515/9783110338379.20.
  • 5. P. Li, Y.R. Yang, W. Xu, Nonlinear dynamics analysis of a two-dimensional thin panel with an external forcing in incompressible subsonic flow, Nonlinear Dynamics, 67, 251–267, 2012, doi: 10.1007/s11071-011-0162-8.
  • 6. P. Li, D.C. Zhang, Z.W. Li, C. Dai, Y. Yang, Bifurcations and post-critical behaviors of a nonlinear curved plate in subsonic airflow, Archive of Applied Mechanics, 89, 2, 343–362, 2019, doi: 10.1007/s00419-018-1471-x.
  • 7. P. Li, Z.W. Li, S. Liu, Y. Yang, Non-linear limit cycle flutter of a plate with Hertzian contact in axial flow, Journal of Fluids and Structures, 81, 131–160, 2018, doi: 10.1016/j.jfluidstructs.2018.04.014.
  • 8. P. Li, Z.W. Li, C.D. Dai, Y. Yang, On the non-linear dynmaics of a forced plate with boundary conditions correction in subsonic flow, Applied Mathematical Modelling, 64, 15–46, 2018, doi: 10.1016/j.apm.2018.07.012.
  • 9. D.C. Zhang, P. Li, Y.Z. Zhu, Y. Yang, Aeroelastic instability of an inverted cantilevered plate with cracks in axial subsonic airflow, Applied Mathematical Modelling, 107, 782–801, 2022, doi: 10.1016/j.apm.2022.03.019.
  • 10. C.Q. Guo, M.P. Païdoussis, Stability of rectangular plates with free side-edges in twodimensional inviscid channel flow, Journal of Applied Mechanics, 67, 1, 171–176, 2000, doi: 10.1115/1.321143.
  • 11. K. Shele, R. Mittal, Flutter instability of a thin flexible plate in a channel, Journal of Fluid Mechanics, 786, 39–46, 2016, doi: 10.1017/jfm.2015.632.
  • 12. Y. Watanabe, S. Suzuki, M. Sugihara, Y. Sueoka, An experimental study of paper flutter, Journal of Fluids and Structures, 16, 529–542, 2002, doi: 10.1006/jfls.2001.0435.
  • 13. Y. Watanabe, K. Isogai, S. Suzuki, M. Sugihara, A theoretical study of paper flutter, Journal of Fluids and Structures, 16, 543–560, 2002, doi: 10.1006/jfls.2001.0436.
  • 14. O. Doare, S. Michelin, Piezoelectric coupling in energy-harvesting fluttering flexible plates: linear stability analysis and conversion efficiency, Journal of Fluids and Structures, 27, (8), 1357–1375, 2011, doi: 10.1016/j.jfluidstructs.2011.04.008.
  • 15. D.M. Tang, E.H. Dowell, Aeroelastic response and energy harvesting from a cantilevered piezoelectric laminated plate, Journal of Fluids and Structures, 45, 124–137, 2014, doi: 10.1016/j.jfluidstructs.2017.09.007.
  • 16. M. Chen, L.B. Jia, Y.F. Wu, X.Z. Yin, Y.B. Ma, Bifurcation and chaos of a flag in an inviscid flow , Journal of Fluids and Structures, 76, 14–36, 2018, doi: 10.1016/j.jfluidstructs.2013.11.020.
  • 17. A.D. Lucey, The excitation of waves on a flexible panel in a uniform flow, Philosophical Transactions of the Royal Society A, 356, 2999–3039, 1998, doi: 10.1098/rsta.1998.0306.
  • 18. R. de Breuker, M.M. Abdalla, Z. Gürdal, Flutter of partially rigid cantilevered plates in axial flow, AIAA Journal, 46, 936–946, 2008, doi: 10.2514/1.31887.
  • 19. J. Zhang, N.S. Liu, X.Y. Lu, Locomotion of a passively flapping flat plate, Journal of Fluid Mechanics, 659, 43–68, 2010, doi: 10.1017/S0022112010002387.
  • 20. Y. Yu, Y. Liu, X. Amandolese, A review on fluid-induced flag vibrations, Applied Mechanics Reviews, 71, 1, 010801, 2019, doi: 10.1115/1.4042446.
  • 21. L. Huang, Flutter of cantilevered plates in axial flow, Journal of Fluids and Structures, 9, 2, 127–147, 1995, doi: 10.1006/jfls.1995.1007.
  • 22. J. Dugundji, E.H. Dowell, B. Perkin, Subsonic flutter of panels on continuous elastic foundations, AIAA Journal, 5, 1146–1154, 1963, doi: 10.2514/3.1738.
  • 23. A. Kornecki, E.H. Dowell, J. O’Brien, On the aeroelastic instability of twodimensional panels in uniform incompressible flow, Journal of Sound and Vibration, 47, 2, 163–178, 1976, doi: 10.1016/0022-460X(76)90715-X.
  • 24. C. Eloy, C. Souilliez, L. Schouveiler, Flutter of a rectangular plate, Journal of Fluids and Structures, 23, 6, 904–919, 2007, doi: 10.1016/j.jfluidstructs.2007.02.002.
  • 25. R.M. Howell, A.D. Lucey, Flutter of spring-mounted flexible plates in uniform flow, Journal of Fluids and Structures, 59, 370–393, 2015, doi: 10.1016/j.jfluidstructs.2015.09.009.
  • 26. B.S.H. Connell, D.K.P. Yue, Flapping dynamics of a flag in a uniform stream, Journal of Fluids and Structures, 581, 33–67, 2007, doi: 10.1017/S0022112007005307.
  • 27. L. Zhu, C.S. Peskin, Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method, Journal of Computational Physics, 179, 452–468, 2002, doi: 10.1006/jcph.2002.7066.
  • 28. W.X. Huang, S.J. Shin, H.J. Sun, Simulation of flexible filaments in a uniform flow by the immersed boundary method, Journal of Computational Physics, 226, 2206–2228, 2007, doi: 10.1016/j.jcp.2007.07.002.
  • 29. D.C. Zhang, S. Liang, P. Li, Y. Yang, A numerical and experimental study on the divergence instability of an inverted cantilevered plate in wall effect, Archive of Applied Mechanics, 90, 1509–1528, 2020, doi: 10.1007/s00419-020-01681-8.
  • 30. S.G. Park, B. Kim, C.B. Chang, J. Ryu, H.J. Sung, Enhancement of heat transfer by a self-oscillating inverted flag in a Poiseuille channel flow, International Journal of Heat and Mass Transfer, 96, 362–370, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.01.043.
  • 31. B. Fan, Fluid-structure interactions of inverted leaves and flags, Doctoral Dissertation, California Institute of Technology, 2015.
  • 32. P. Buchak, C. Eloy, P.M. Reis, The clapping book: wind-driven oscillations in a stack of elastic sheets, Physical Review Letters, 105, 19, 194301, 2010, doi: 10.1103/Phys-RevLett.105.194301.
  • 33. S. Michelin, O. Doaré, Energy harvesting efficiency of piezoelectric flags in axial flows, Journal of Fluid Mechanics, 714, 489–504, 2013, doi: 10.1017/jfm.2012.494.
  • 34. S.J. Simitses, D.H. Hodges, Fundamentals of Structural Stability, Elsevier Inc., 2006.
  • 35. M. Tavallaeinejad, M.P. Païdoussis, M. Legrand, Nonlinear static response of lowaspect-ratio inverted flags subjected to a steady flow, Journal of Fluids and Structures, 83, 413–428, 2018, doi: 10.1016/j.jfluidstructs.2018.09.003.
  • 36. O. Ojo, K. Shoele, Piezoelectric energy harvesting of an inverted flag behind a bluff body, 73rd Annual Meeting of the APS Division of Fluid Dynamics, Chicago, Bulletin of the American Physical Society, 65, 13, 2020.
  • 37. S. Mazharmanesh, J. Young, F.B. Tian, J.C.S. Lai, Energy harvesting of two inverted piezoelectric flags in tandem, side-by-side and staggered arrangements, International Journal of Heat and Fluid Flow, 83, 108589, 2020, doi: 10.1016/j.ijheatfluidflow.2020.108589.
  • 38. M. Tavallaeinejad, M.P. Païdoussis, M. Legrand, M. Kheri, Instability and the post-critical behaviour of two-dimensional inverted flags in axial flow, Journal of Fluid Mechanics, 890A, 14, 1–14, 2020, doi: 10.1017/jfm.2020.111.
  • 39. J.E. Sader, J. Cossé, D. Kim, B. Fan, Large-amplitude flapping of an inverted flag in a uniform steady flow-a vortex-induced vibration, Journal of Fluid Mechanics, 793, 524–555, 2016, doi: 10.1017/jfm.2016.139.
  • 40. M. Serry, A. Tuffaha, Static stability analysis of a thin plate with a fixed trailing edge in axial subsonic flow: Possio integral equation approach, Applied Mathematical Modelling, 63, 644–659, 2018, doi: 10.1016/j.apm.2018.07.005.
  • 41. D. Kim, J. Cossé, C.H. Cerdeira, M. Gharib, Flapping dynamics of an inverted flag, Journal of Fluid Mechanics, 736R1, 1–12, 2013, doi: 10.1017/jfm.2013.555.
  • 42. A. Goza, T. Colonius, J.E. Sader, Global modes and nonlinear analysis of invertedflag flapping, Journal of Fluid Mechanics, 857, 312–344, 2016, doi: 10.1017/jfm.2018.728.
  • 43. P.S. Gurugubelli, R.K. Jaiman, Self-induced flapping dynamics of a flexible inverted foil in a uniform flow, Journal of Fluid Mechanics, 781, 657–694, 2015, doi: 10.1017/jfm.2015.515.
  • 44. J. Ryu, S.G. Park, B. Kim, H.J. Sung, Flapping dynamics of an inverted flag in a uniform flow, Journal of Fluids and Structures, 57, 159–169, 2015, doi: 10.1016/j.jfluidstructs.2015.06.006.
  • 45. J.W. Park, J. Ryu, H.J. Sung, Effects of the shape of an inverted flag on its flapping dynamics, Physics of Fluids, 31, 2, 021904, 2019, doi: 10.1017/jfm.2013.555.
  • 46. C. Tang, N.S. Liu, X.Y. Lu, Dynamics of an inverted flexible plate in a uniform flow, Physics of Fluids, 27, 7, 073601, 2015, doi: 10.1063/1.4923281.
  • 47. K. Shoele, R. Mittal, Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag, Journal of Fluid Mechanics, 790, 582–606, 2016, doi: 10.1017/jfm.2016.40.
  • 48. A.V. Balakrishnan, Aeroelasticity: The Continuum Theory, Springer Science and Business Media, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5cfa92c-b2fc-4992-ad5f-a96b582c3cd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.