PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the X-ray wavelength division multiplexing technology for blackout region communication

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
After the concept of X-ray communication was proposed, its application in complex electromagnetic environment has received more attention, such as data transmission in re-enter special electro-magnetic condition. In this article, a new type of X-ray source was introduced firstly, which was expected to generate multiple characteristic lines and achieve wavelength division multiplexing technology in X-ray band. Then an experimental platform was built for analyzing transmission characteristics of X-ray photon in various plasma media. Finally, the calculation model for a link power equation was given. Experiment results show that transmittance of 8–18 keV X-ray signal is relatively stable, atomic numbers from 29 to 42 are the most suitable materials for wavelength division multiplexing, the X-ray communication system is expected to realize about 200 kbps data transmission rate in adjacent space.
Czasopismo
Rocznik
Strony
619--632
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
  • Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, College of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China
autor
  • State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
autor
  • State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
autor
  • State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
  • State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
Bibliografia
  • [1] GENDREAU K., Next-generation communications: ‘Demonstrating the world’s first X-ray communication system, FS-2007-10-103-GSFC (TT#7).; https://gsfctechnology.gsfc.nasa.gov/TechSheets/XRAY_Goddard_Final.pdf (accessed September 30, 2019).
  • [2] SONG S.B., XU L.P., ZHANG H., BAI Y., Novel X-ray communication based XNAV augmentation method using X-ray detectors, Sensors 15(9), 2015, pp. 22325–22342, DOI:10.3390/s150922325.
  • [3] NASA Technology Roadmaps, Communication, navigation, and orbital debris tracking and characterization systems, Report No. TA5 (2015), pp. 12–13; https://www.nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps.pdf (accessed September 30, 2019).
  • [4] WANG L.Q., SU T., ZHAO B.S., SHENG L.Z., LIU Y.A., LIU D., Bit error rate analysis of X-ray communication system, Acta Physica Sinica 64(12), 2015, article 120701, DOI:10.7498/aps.64.120701.
  • [5] LI H., TANG X., HANG S., LIU Y., CHEN D., Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth’s atmosphere, Journal of Applied Physics 121(12), 2017, article 123101, DOI:10.1063/1.4978758.
  • [6] HANG S., LIU Y., LI H., TANG X., CHEN D., Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 887, 2018, pp. 18–26, DOI:10.1016/j.nima.2018.01.031.
  • [7] LI Y., SU T., SHI F., SHENG L., QIANG P., ZHAO B., Bit error rate analysis of the spatial X-ray communication system, Infrared and Laser Engineering 47(6), 2018, article 622001, DOI:10.3788/IRLA201847.0622001.
  • [8] LI Y., SU T., LEI F., XU N., SHENG L.Z., ZHAO B.S., X-ray transmission characteristics and potential communication application in plasma region, Acta Physica Sinica 68(4), 2019, article 040401, DOI:10.7498/aps.68.20181973.
  • [9] NASA, NASA Set to Demonstration X-ray Communication in Space, https://www.nasa.gov/sites/de-fault/files/atoms/files/winter_2019_final_web_version.pdf (accessed February 2, 2019).
  • [10] SU T., TANG L., LI Y., SHENG L., ZHAO B., An X-ray frequency modulation method and its applicationin X-ray communication, Optik 199, 2019, article 163263, DOI:10.1016/j.ijleo.2019.163263.
  • [11] PLEWES D.B., VOGELSTEIN E., Grid controlled X-ray tube switching time: implications for rapid exposure control, Medical Physics 11(5), 1984, pp. 693–696, DOI:10.1118/1.595560.
  • [12] YUE G.Z., QIU Q., GAO B., CHENG Y., ZHANG J., SHIMODA H., CHANG S., LU J.P., ZHOU O., Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode, Applied Physics Letters 81(2), 2002, pp. 355–357, DOI:10.1063/1.1492305.
  • [13] JOHNSTON E.M., BYUN S.H., FARQUHARSON M.J., Determination of optimal metallic secondary target thickness, collimation, and exposure parameters for X‐ray tube‐based polarized EDXRF, X-Ray Spectrometry 46(2), 2017, pp. 93–101, DOI:10.1002/xrs.2736.
  • [14] ZSCHORNACK G.H., Handbook of X-Ray Data, Springer-Verlag, Berlin, Heidelberg, 2007, DOI:10.1007/978-3-540-28619-6.
  • [15] CHEN W., YANG L.X., HUANG Z.X., GUO L., Propagation characteristics of THz waves in space-time inhomogeneous and fully ionized dusty plasma sheath, Journal of Quantitative Spectroscopy and Radiative Transfer 232, 2019, pp. 66–74, DOI:10.1016/j.jqsrt.2019.05.001.
  • [16] TAVANT A., CROES V., LUCKEN R., LAFLEUR T., BOURDON A., CHABERT P., The effects of secondary electron emission on plasma sheath characteristics and electron transport in an E × B discharge via kinetic simulations, Plasma Sources Science and Technology 27(12), 2018, article 124001, DOI:10.1088/1361-6595/aaeccd.
  • [17] YANG M., LI X.P., XIE K., LIU Y., LIU D., A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma, Physics of Plasmas 20(1), 2013, article 012101, DOI:10.1063/1.4773906.
  • [18] LEI F., LI X.P., LIU Y.M., LIU D.L., YANG M., YU Y.Y., Simulation of a large size inductively coupled plasma generator and comparison with experimental data, AIP Advances 8(1), 2018, artticle 015003, DOI:10.1063/1.5016354.
  • [19] LI J.M., WANG Y., WEI J.J., YUAN C.X., ZHOU Z.X., WANG X.O., KUDRYAVTSEV A.A., Effects of non-Maxwellian electron distribution function to the propagation coefficients of electromagnetic waves in plasma, IEEE Transactions on Plasma Science 47(1), 2019, pp. 100–103, DOI:10.1109/TPS.2018.2883909.
  • [20] ZHAO W., LI Y., WEI X., XIAO L., ZHANG B., LI Y., A plasma sheath reproducing method based on adding alkali metal to promote ionization, Journal of Astronautics 39(7), 2018, pp. 115–122.
  • [21] CHEN W., YANG L.X., HUANG Z.X., GUO L.X., Research on the propagation characteristics of THz waves in spatial inhomogeneous and time-varying and weakly ionized dusty plasma, IEEE Transactions on Plasma Science 47(10), 2019, pp. 4745–4752, DOI:10.1109/TPS.2019.2935245.
  • [22] JIA J.S., YUAN C.X., GAO R.L., WANG Y., LIU Y., GAO J.Y., ZHOU Z.X., SUN X.D., WU J., LI H., PU S.Z., Propagation of electromagnetic waves in a weakly ionized dusty plasma, Journal of Physics D: Applied Physics 48(46), 2015, article 465201, DOI:10.1088/0022-3727/48/46/465201.
  • [23] WANG Z.Y., GUO L.X., DAN L., LI J.T., EM waves propagation characteristics based on modified dielectric constant model in nonuniform weakly ionized dusty plasma, IEEE Transactions on Plasma Science 47(8), 2019, pp. 3978–3985, DOI:10.1109/TPS.2019.2922195.
  • [24] SU T., LI Y., SHENG L.Z., QIANG P.F., CHEN C., XU N., ZHAO B.S., Space X-ray communication link modeling and power analysis, Acta Photonica Sinca 46(10), 2017, article 1035001, DOI:10.3788/gzxb20174610.1035001.
  • [25] ZHANG F.R., HAN J.F., RUAN P., Beam pointing analysis and a novel coarse pointing assembly design in space laser communication, Optik 189, 2019, pp. 130–147, DOI:10.1016/j.ijleo.2019.05.079.
  • [26] XU N., LIU Y.A., SHENG L.Z., SU T., CHEN C., LI Y., ZHAO B.S., LIU C.L., Novel electronic readout system for micro-channel plate detector with wedge and strip anode, Journal of Modern Optics 66(6), 2019, pp. 697–701, DOI:10.1080/09500340.2019.1567844.
  • [27] LIU D., QIANG P.F., LI L.S., SU T., SHENG L.Z., LIU Y.A., ZHAO B.S., X-ray focusing optics and its application in X-ray communication system, Acta Physica Sinica 65(1), 2016, article 010703, DOI:10.7498/aps.65.010703.
  • [28] LIDER V.V., Kirkpatrick–Baez and Wolter X-ray focusing optics (review), Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 13(4), 2019, pp. 670–682, DOI:10.1134/S102745101904027X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5cbeb4a-4901-4983-8f8f-b42d60f29496
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.