PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and biological properties of carbon fiber-reinforced peek composite materials intended for laryngeal prostheses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work deals with the mechanical properties and biological behaviour of composite materials made of polyether ether ketone (PEEK) polymer and carbon fibers (CF) designed for laryngeal biomaterials. Two types of PEEK–based matrix composites containing carbon fibers in the form of cloth (2D) and short fibers (MD) were made. The composite samples were obtained via hot mol-ding of PEEK/CF prepregs. Mechanical durability of the composite samples aging in Ringer’s solution at 37oC was analyzed. The samples were dynami-cally loaded under bending force up to 106 cycles. The ultrasonic wave propagation method was applied to study changes in the composites. The mechanical changes were analyzed, taking into consideration the anisotropic structure of the composite samples. The layered composite samples were modified with multiwalled carbon nanotubes (CNTs). The changes in mechanical stability of the composite samples were not significant after fatigue testing up to 1·106cycles. The biological tests were carried out in the presence of hFOB-1.19-line human osteoblasts and HS-5-line human fibroblasts. The level of type I collagen produced from both types of cells was determined by ELISA test. The tests showed differen-ces between the samples with regard to the viability of the cells.
Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 26 poz., tab., wykr., zdj.
Twórcy
  • Medical University of Silesia in Katowice, School of Medicine in Katowice, Laryngology Department, ul. Medyków 18, 40-752 Katowice, Poland
  • University of Silesia, Faculty of Computer Science and Materials Science, Institute of Materials Science, ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Medical University of Silesia in Katowice, School of Medicine in Katowice, Laryngology Department, ul. Medyków 18, 40-752 Katowice, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] http://onkologia.org.pl/nowotwory-zlosliwe-krtani-c32/
  • [2] Lewin J.S., Baumgart L.M., Barrow M.P., Hutcheson K.A.: Device Life of the Tracheoesophageal Voice Prosthesis Revisited. JAMA Otolaryngology- Head & Neck Surgery 143(1) (2017) 65-71.
  • [3] van Sluis K.E., van der Molen L., van Son R.J.J.H., Hilgers F.J.M., Bhairosing P.A., van den Brekel M.W.M.: Objective and subjective voice outcomes after total laryngectomy: a systematic review. European Archives of Oto-Rhino-Laryngology 275(1) (2018) 11-26.
  • [4] Krishnamurthy A., Khwajamohiuddin S.: Analysis of Factors Affecting the Longevity of Voice Prosthesis Following Total Laryn-gectomy with a Review of Literature. Indian Journal of Surgical Oncology 9(1) (2018) 39-45.
  • [5] Choussy O., Hibon R., Bon Mardion N., Dehesdin D.: Manage-ment of voice prosthesis leakage with Blom-Singer large esophage and tracheal flange voice prostheses.European Annals of Otorhi-nolaryngology, Head and Neck Diseases 130(2) (2013) 49-53.
  • [6] Somogyi-Ganss E., Chambers M.S., Lewin J.S., Tarrand J.J., Hutcheson K.A.: Biofilm on the tracheoesophageal voice prosthe-sis: considerations for oral decontamination. European Archives of Oto-Rhino-Laryngology 274(1) (2017) 405-413.
  • [7] Monroe D.: Looking for chinks in the armor of bacterial biofilms. PLoS Biology 5(11) (2007).
  • [8] Kress P., Schäfer P., Schwerdtfeger F.P., Rösler S.: Are modern voice prostheses better? A lifetime comparison of 749 voice prostheses. European Archives of Oto-Rhino-Laryngology. 271(1) (2014) 133-40.
  • [9] https://www.lmaco.com/products/provox%C2%AE--vega%C2%AE-voice-prosthesis
  • [10] Kurtz S.M., Devine J.N.: PEEK biomaterials in trauma, ortho-pedic, and spinal implants. Biomaterials 28(32) (2007) 4845-4869.
  • [11] Migacz K., Chlopek J., Morawska-Chochol A., Ambroziak M.: Gradient composite materials for artificial intervertebral discs. Acta of Bioengineering and Biomechanics 16(3) (2014) 4-12.
  • [12] Toth J.M., Wang M., Estes B.T., Scifert J.L., Seim H.B., Turner A.S.: Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 27(3) (2006) 324-334.
  • [13] Xu A.X., Liu X.C., Gao X., Deng F., Deng Y., Wei S.C.: Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone–nanohydroxyapatite biocomposite. Materials Science and Engineering: C 48 (2015) 592-598.
  • [14] Hahnel S., Wieser A., Lang R., Rosentritt M., Biofilm formation on the surface of modern implant abutment materials. Clinical Oral Implants Research 26(11) (2015) 1297-1301.
  • [15] Montero J.F., Tajiri H.A., Barra G.M., Fredel M.C., Benfatti C.A., Magini R.S., Pimenta A.L., Souza J.C.: Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Materials Science and Engineering: C 70(1) (2017) 456-460.
  • [16] Schwitalla A.D., Spintig T., Kallage I., Muller W.D.: Flexural behavior of PEEK materials for dental application. Dental Materials 31(11) (2015) 1377-1384.
  • [17] Brockett C.L., Carbone S., Abdelgaied A., Fisher J., Jennings L.M.: Influence of contact pressure, cross-shear and counterface material on wear of PEEK and CFR-PEEK for orthopeadic applications. Journal of the Mechanical Behavior of Biomedical Materials 63 (2016) 10-16.
  • [18] Nazimi A.J., Yusoff M.M., Nordin R., Nabil S.: Use of polyethe-retherketone (PEEK) in orbital floor fracture reconstruction - A case for concern. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology 27(4) (2015) 536-539.
  • [19] Dworak M., Bloch M., Blazewicz S.: Chemical and mechanical study of PEEK/carbon fibre composite. Engineering of Biomaterials 69-72 (2007) 121-124.
  • [20] Dworak M., Rudawski A., Markowski J., Blazewicz S.: Dynamic mechanical properties of carbon fibre-reinforced PEEK composites in simulated body-fluid. Composite Structures 161 (2017) 428-434.
  • [21] Dworak M., Blazewicz S.: Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading. Acta of Bioengineering and Biomechanics 18(2) (2016) 71-79.
  • [22] Meister K., Cobb A., Bentley G.: Treatment of painful articular cartilage defects of the patella by carbon-fibre implants. Journal of Bone and Joint Surgery 80 (1998) 965-970.
  • [23] Abarrategi A., Gutierrez M.C., Moreno-Vicente C., Hortiguela M.J., Ramos V., Lopez-Lacomba J.L.: Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29 (2008) 94-102.
  • [24] Correa-Duarte M.A., Wagner N., Rojas-Chapana J., Morsczeck C., Thie M., Giersig M.: Fabrication and Biocompatibility of Carbon Nanotube-Based 3D Networks as Scaffolds for Cell Seeding and Growth.Nano Letters 4 (11) (2004) 2233-2236.
  • [25] Magiera A., Markowski J., Menaszek E., Pilch J., Blazewicz S.: PLA-based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering. Journal of Nanomaterials (2017) 1-11.
  • [26] Seo K., Kim M., Kim D.H.: Candle-Based Process for Creating a Stable superhydrophobic surface. Carbon 68 (2014) 583-596.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5c10348-6dfe-4b87-a031-3b296f11a6a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.