PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Centrifugal compressor performance improvement through multi splitter impeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, a back swept impeller of centrifugal compressor is experimentally studied and numerically validated and modified to increase its pressure ratio and improve efficiency, as well as to analyse the effect of splitter blade location between two main blades. The back swept multi splitter blade impeller was designed with a big splitter positioned close to the main blade suction surface and a smaller splitter close to the pressure surface. Adding this multi splitter improves the overall performance of the modified impeller due to less intensive flow separation and smaller pressure loss. In particular, the total pressure ratio was observed to increase from 4.1 to 4.4, with one percent increase in efficiency.
Rocznik
Tom
Strony
6--14
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Harbin Engineering University 145 Nantong Street, 150001 Harbin China
autor
  • Harbin Engineering University 145 Nantong Street, 150001 Harbin China
  • National University of Sciences and Technology Habib Rehmatullah Road, 75300 Karachi Pakistan
  • Harbin Engineering University 145 Nantong Street, 150001 Harbin China
autor
  • Harbin Engineering University 145 Nantong Street, 150001 Harbin China
Bibliografia
  • 1. C. Xu, R. S. Amano: Numerical simulation of the aerodynamic effects on sweep compressor blades, 2004, IGTI-2004-53008.
  • 2. C. Xu and R. S. Amano: A study of a single stage centrifugal compressor, ASME Electric Power Conference 2006, PWR2006- 88023, Georgia World Congress Centre, Atlanta, GA.
  • 3. C. Xu and R. S. Amano: Computational analysis of Scroll tongue shapes to compressor performance by using different turbulence models, 2007, GT2007-28224.
  • 4. C. Xu and R. S. Amano: Development of a low flow coefficient single stage centrifugal compressor, International Journal for Computational Methods in Engineering Science and Mechanics, 2009, 10(4), 282–289.
  • 5. C. Xu, R. S. Amano: Study of the flow in a centrifugal compressor, Int. J. of Fluid Machinery and System, 2010, 3(3), 260–270.
  • 6. C. Xu, R. S. Amano: Meridional considerations of the centrifugal compressor development, International Journal of Rotating Machinery, 2012, 1-11, doi:10.1155/2012/518381.
  • 7. C. Xu, R. S. Amano: Empirical design considerations for industrial centrifugal compressors. International Journal of Rotating Machinery, 2012, 1-15, doi./10.1155/2012/184061.
  • 8. Dean R.: On the unresolved fluid dynamics of the centrifugal compressor, Advanced Centrifugal Compressors, 1971, ASME Publications.
  • 9. Fradin, C: Investigation of the three-dimensional flow near the exit of two backswept transonic centrifugal impellers, Proc. of the Eighth International Symposium in Air Breathing Engines, 1987, 149–155.
  • 10. Hathaway M. J., Chriss R. M., Wood J. R., Strazisar A. J.: Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field, ASME J. of Turbomachinery, 1993, Vol. 115, pp. 527–542.
  • 11. Hirofumi Hattori, Tomoya Houra, Amane Kono and Shota Yoshikawa: Computational fluid dynamics study for improvement of prediction of various thermally stratified turbulent boundary layers, J. Energy Resour. Technol., 2017, 139 (5): 051209-051209-8.
  • 12. Kano F., Tazawa N., Fukao Y.: Aerodynamic performance of large centrifugal compressors, 1982, ASME Paper 82-GT-17.
  • 13. Krain H.: A study on centrifugal impeller and diffuser flow, Transactions of the ASME, 1981, Vol. 103, pp. 688–697.
  • 14. Masanao Kaneko, Hoshio Tsujita: Influences of tip leakage flows discharged from main and splitter blades on flow field in transonic centrifugal compressor stage, 2018, ASME Turbo Expo 2018, Vol. 2B, Paper GT 2018-75345.
  • 15. M. Zangeneh: On 3D design of centrifugal compressor impellers with splitter blades, 1998, ASME paper 98-GT-507.
  • 16. McKain T. F., Holbrook G. J.: Coordinates for a high performance 4:1 pressure ratio centrifugal compressor, NASA Contract NAS 3-23268, 1982, (to be published as a NASA CR).
  • 17. Millour, V.: 3D Flow Computations in a Centrifugal Compressor with Splitter Blade Including Viscous Effect Simulation, 16th Congress, International Council for Aeronautical Societies, 1988, 1, 842–847.
  • 18. Moore J., Moore J. G., Timmis, P. H.: Performance evaluation of centrifugal compressor impellers using three-dimensional viscous flow calculations, J. of Engineering for Gas Turbines and Power, 1984, Vol. 106, pp. 475–481.
  • 19. Ona, M., Kawamoto, H., Yamamoto, Y.: Approach to high performance transonic centrifugal compressor, 2002, AIAA 2002–3536.
  • 20. Skoch G. J., Prahst P. S., Wernet M. P., Wood J. R., Strazisar A. J.: Laser anemometer measurements of the flow field in a 4:1 pressure ratio centrifugal impeller, 1997, ASME Paper 97-GT-342.
  • 21. Tamaki, H., Yamaguchi, S., Nakao, H., Yamaguchi, H., Ishida, K., Mitsubori, K.: Development of compressor for high-pressure ratio turbocharger, 1998, IMechE C554/002.
  • 22. Teipel I. and Wiedermann, A.: Computation of flow fields in centrifugal compressor diffusers with splitter vanes, Proc. of the International Gas Turbine Congress, 1987, 2, 311–317.
  • 23. Vavra, M. H.: Basic Elements of Advanced Design of RadialFlow Compressors, AGARD Lecture Series No. 89 on “Advanced Compressors, 1970”.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5b39b50-531c-4513-b93e-da1d7815a252
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.