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Abstract

In the present paper, we deal with the methodology of nonlinear encryption on the
basis of parallel modular computing structures. The use of the minimal redundant modu-
lar number system and the interval-modular form of representation of an integer number
defined by its modular code creates the computer-arithmetical basis of a cryptographic
procedure under consideration. The proposed encryption algorithm is based on the index
method of realization of the modular multiplicative operations.

1. Introduction

The creation of effective and secure information systems is one of the
priority directions of constructing the protected, dynamically developing
information space which covers all the fields of the state activity. Solving the
problems of creation of new information security technologies, it is necessary
to combine, on the one hand, the high processing rate and transmissions of
large volumes of information, and on the other hand, access restrictions to
it, providing the required information protection level [1 - 5].

However, in modern information and communication systems the most
of the known algorithms of cryptographic information security do not allow
performing real time encoding of big data streams. This is substantially
caused by the fact that the conventional methods of implementation of
these algorithms on the basis of arithmetic of positional number system are
insufficiently effective owing to their sequential internal structure.

One of the perspective directions of developing modern cryptography sys-
tems of information security (CSIS) consists in the use of nonconventional
methods of information processing on the basis of application of the modu-
lar computing structures (MCS) possessing the maximum level of internal
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parallelism [6 - 10]. In the present article, the implementation of the nonlin-
ear encryption algorithm in modular number systems (MNS) is discussed.
The possibility of employing the index representation of Galois fields ele-
ments and minimal redundant modular coding of information is considered
to increase the speed of cryptographic transformations.

2. The index method of realization of multiplicative
operations

The computing algorithms used in the modern CSIS are characterized
by the increased content of multiplicative arithmetical operations (modular
multiplication and exponentiation of elements of finite fields) in the case of
relatively small amount of additive operations. In such systems the index
representation of nonzero elements of Galois fields is the most convenient
tool for implementation of cryptographic transformations.

The main idea underlying the index data representation (or as it also
called "discrete log representation") consists in the possibility of reducing
the modular multiplication operation of residues to the modular addition
operation [11].

Let us define some prime module p. A set of the smallest non-negative
residues of the division of all integer numbers by p forms a complete residue
system modulo p, i.e. a set Zp = {0, 1, . . . , p− 1}.

Let us designate a set containing nonzero elements of a ring Zp as Z∗p =
{1, 2, . . . p − 1}. The set Z∗p is the reduced system of residues modulo p
and represents a cyclic group with respect to multiplication modulo p.
This means that there is a generating element g such that any element
χ ∈ Z∗p can be obtained as some degree of an element g, i.e. the set
{|g0|p, |g1|p, . . . , |gp−2|p} coincides with the set Z∗p accurate within the per-
mutation of its elements.

The isomorphism of the multiplicative group Z∗p and the additive group
Zp−1 = {0, 1, . . . , p−2} set by the mapping G : Z∗p → Zp−1 which assigns to
each element χ ∈ Z∗p the unique element G(χ) = indg χ from Zp−1 satisfying
the equality

|gindg χ|p = χ, (1)

plays a significant part in practical realization of the idea of the index
method for organization of modular calculations. Here, g is a primitive
root modulo p defined as an element of Abelian group 〈Z∗p,×〉 ⊂ 〈Zp,+〉
with the order N = φ(p) = p − 1; φ(p) is the Euler function (the number
of nonzero residues of the ring Zp mutually prime to p); the element indg χ
of the group Zp−1 is called an index (or a logarithm) of an integer χ to the
base g modulo p.
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The index representation of the nonzero elements of the field GF (p) is
suitable for performance of multiplicative operations as well as operations
inverse to them [6]. According to (1), in the case of prime p for any α, β ∈ Z∗p
the following relation is true

|αβ|p = |gindg |αβ|p |p = |g|indgα+indg β|p−1 |p. (2)

Thus, the multiplication modulo a prime p can always be reduced to mod-
ular addition because of the isomorphism of multiplicative group Z∗p and
additive index group Zp−1. According to (2), in order to obtain |αβ|p it is
enough to determine the indices indg α and indg β of the operands α and β,
add them modulo p− 1 and then transform the resulting residue indg |αβ|p
= | indg α+ indg β|p−1 to the desired product |αβ|p.

For small value of the module p, the direct and inverse transformations of
the residues χ and indg χ (χ ∈ Zp) corresponding to the mappings G : χ→
indg χ and G−1 : indg χ→ χ in practice are easily carried out by the look-up
table method. Since the volume of the tables required for transformations is
about 10 times less than it is for the table of residue multiplication modulo p,
then a considered method of modular multiplication with the use of indices
appears more efficient than a direct table method, especially with increase
of the value of module p. At the same time, the permitted values of the
chosen MNS bases are majorized by a threshold allowing the application of
tables, for example, by 216.

In recent years, the comprehensive use of the algebraic systems defined in
Galois’ fields is one of the most perspective directions in the development of
modern CSIS. Therefore, the index method of organization of the modular
computation (see (2) and (3)) is of the special interest from the practical
point of view, first of all, for effective realization of cryptological procedures
in the MNS.

3. The computer-arithmetical basis of modular computing
technology

At the present time exists a situation when a conventional data represen-
tation and the use of conventional arithmetic of position number systems
cease to meet the increased requirements for the CSIS performance. One of
the ways to improve a CSIS is the transition to the unconventional comput-
ing arithmetic, i.e. by performing all the computations using a MNS [6–10].
The unique property of MNS to carry out the intrinsic decomposition of
basic algebraic systems into components of smaller complexity independent
from each other caused the wide use of modular arithmetic (MA) in mod-
ern computer science and its applications as effective mathematical tool for
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mapping of computing processes to high-speed parallel pipeline architec-
tures [6, 7, 12–17].

A classic MNS on the set of integers Z is determined by means of pairwise
relatively prime modules m1,m2, . . . ,mk (k ≥ 2). In the given MNS, the
numberX ∈ Z is represented asX = (χ1, χ2, . . . , χk), where χi = |X|mi ; we
shall designate through |x|m the element of the set Zm = {0, 1, . . . ,m− 1}
that is congruent to x modulo m. In the nonredundant MNS with the bases
m1,m2, . . . ,mk it is possible to code at most Mk =

∏k
i=1mi integers. At

the same time, the set ZMk
= {0, 1, . . . ,Mk − 1} is usually used as a range

of MNS.
In the MNS with the bases m1,m2, . . . ,mk the modular operations (ad-

dition, subtraction and multiplication without overflow check) on any two
integers A and B, represented by means of modular codes (MC): A =
(α1, α2, . . . , αk), B = (β1, β2, . . . , βk) (αi = |A|mi , βi = |B|mi , i = 1, 2, . . . , k),
are carried out independently for each base, i.e. by the rule

A ◦B = (α1, α2, . . . , αk) ◦ (β1, β2, . . . , βk) =

= (|α1 ◦ β1|m1 , |α2 ◦ β2|m2 , . . . , |αk ◦ βk|mk
) (◦ ∈ {+,−,×}. (3)

The natural internal parallelism of MNS caused by the lack of interdigit
carry propagation during performance of modular operations (3) holds a
central position in all the advantages of MA.

The decoding mapping ΦMNS : Zm1 × Zm2 × . . . × Zmk
→ D for the

MNS with a range D = ZMk
which associates the MC (χ1, χ2, . . . , χk) with

an element X ∈ D can be realized according to the Chinese Remainder
Theorem [6, 7] by means of the relation

X =

k−1∑
i=1

Mi,k−1|M−1i,k−1χi|mi + I(X)Mk−1, (4)

where Mi,k−1 =Mk−1/mi,Mk−1 =
∏k−1
i=1 mi; I(X) is an integral character-

istic of MC called an interval index (II) of a number X with respect to the
modules m1,m2, . . . ,mk; |c−1|m designates the multiplicative inversion of
an integer c modulo m which is defined as an element d of a ring Zm such
that |cd|m = 1. For any c relatively prime to m the value d = |c−1|m always
exists and is unique. The expression (4) is called an interval-modular form
(IMF) of an integer X [6, 7] .

In the classical MNS the calculation of an II I(X) demands the appli-
cation of the general algorithm for generating the integral characteristics
of MC which is quite difficult and labor-consuming [7, 18]. As is generally
known, it is possible to improve significantly the arithmetic properties of
MNS and to optimize the algorithms of MA by introducing the so-called
minimal additional redundancy which is carried out by some reduction of
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the effective range of MNS [6, 7, 12, 13]. The minimal redundant modular
coding ΦMRMNS : Zm1 × Zm2 × . . . × Zmk

→ D provides the use of the
range D with a cardinal number |D| < Mk.

For many computer applications including also most of modern cryp-
tological algorithms it is enough to use as basic the version of minimal
redundant MA (MRMA) oriented on operating only with non-negative in-
tegers. In this case, for the redundant MNS a set ZM = {0, 1, . . . ,M − 1}
is usually applied as a range D, where M = m0Mk−1, m0 is a fixed natural
number.

The required configuration of minimum redundant MNS (MRMNS) is
achieved by the choice of the kth module mk satisfying a condition mk ≥
m0 + ρ, where

ρ =

⌊
k−1∑
i=1

mi − 1

mi

⌋
= k − 1−

⌈
k−1∑
i=1

1

mi

⌉
≤ k − 2 (5)

represents the maximum value of the rank characteristic ρk−1(X) deter-
mined by the equality

|X|Mk−1
=

k−1∑
i=1

Mi,k−1|M−1i,k−1χi|mi + ρk−1(X)Mk−1

(the designations bxc and dxe are used for the nearest to x integers at the
left and at the right, respectively). The minimal redundancy is attained in
the case when the equality mk −m0 − ρ = |mk − ρ|2 holds [7, 12, 13].

At the same time, the calculation of the II I(X) of a number X ∈ D
becomes extremely simple since its value is completely defined by the so-
called computer II Îk(X) = |I(X)|mk

and is reduced to summation of a set
of k residues modulo mk. The following relation is true:

I(X) =

{
Îk(X) if Îk(X) < m0;

Îk(X)−mk if Îk(X) ≥ mk − ρ,
(6)

where the residue Îk(X) is determined according to the calculation relations

Îk(X) =

∣∣∣∣∣
k∑
i=1

Ri,k(χi)

∣∣∣∣∣
mk

; (7)

Ri,k(χi) =

∣∣∣∣−χi,k−1Mk−1

∣∣∣∣
mk

(i 6= k), Rk,k(χk) =

∣∣∣∣ χk
Mk−1

∣∣∣∣
mk

. (8)

A redundancy of modular coding is specified by the relation

RMNS = 1− log |ZM |
log |ZMk

|
= 1− logM

logMk
=

log (mk/m0)

logMk
.
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Taking into account (5), the lower bound of the input redundancy is
assigned by the formula

RMNS,min =
log (mk/(mk − k + 2))

logMk

and approaches zero with the increase of cardinality of the MNS range.
In spite of the fact that the input additional redundancy is very small,

just it allows us to simplify significantly the algorithms of performance of
nonmodular operations, first of all, the operations of transformation and
expansion of MC. It is seen from the relations (6)–(8) that in compari-
son with conventional (nonredundant) configurations of the MA a minimal
redundant modular coding allows us to attain an essentially new level of
optimization of nonmodular procedures on such qualitative characteristics
as performance and computational burden. This is caused by the fact that
the nonmodular procedures synthesized on the basis of IMF (4) use an in-
terval index which is calculated by means of the simple relations and is
formed precisely, without an error inherent in the calculation of the rank
characteristic [6, 7]. The main advantages of applied modular computing
technology for the construction of CSIS are determined by the reason men-
tioned above, and a MRMA represents an effective computer-arithmetical
basis for the realization of various cryptographic tasks.

4. The nonlinear algorithm of symmetric encryption in the
MNS

Let us consider the realization of nonlinear encryption of a high-speed
data flow with the use of minimal redundant modular coding and index
representation of nonzero elements of Galois fields.

The input sequence represented by a set of binary digits is divided into
blocks. Thus, each such a block of length L represents some non-negative
integer number A from the range [0, 2L), A = (aL−1 aL−2 . . . a1 a0)2,
where aj ∈ Z2 (j = 0, 1, . . . , L− 1).

Let us set the basic MRMNS with the bases m1,m2 . . . ,mk and the
range ZM . At the same time the modules mi (i = 1, 2, . . . , k) are chosen
to satisfy the relation M > 2L. A primitive element gi ∈ Zmi , i.e. the
generator of degree mi − 1, is chosen for each basis mi. Thus, a set of all
primitive elements over the bases of the MRMNS can be interpreted as the
MC (g1, g2, . . . , gk) of some number G ∈ ZM (gi = |G|mi , i = 1, 2, . . . , k)
which will be called a primitive number of MRMNS. The combination of
the chosen modules of MRMNS and the primitive number represent the
confidential information in the CSIS.

The number A ∈ Z2L corresponding to the information block is uniquely
coded in the MRMNS by the set of residues αi = |A|mi modulo mi (i =
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1, 2, . . . , k), i.e. A = (α1, α2, . . . , αk). Transformation of the positional
code of an integer A to the minimal redundant MC (MRMC) is carried out
within the parallel and pipelined MCS of look-up table type [6, 7]. Further,
a procedure for the encryption is applied to the block represented in MRMC.
For this purpose, at first, the L-bit key sequence B has to be generated by
means of pseudorandom sequence generator.

The process of encrypting represents the imposition of key sequence over
the information block in MRMNS. This procedure can be considered as
realization of some transformation C = |F (A,B)|Mk

which is carried out in
parallel over the bases m1,m2, . . . ,mk. In the MRMNS the various types
of linear and nonlinear cryptographic functions and their combinations can
be realized, for example C = |A + B|Mk

, C = |A · B|Mk
, C = |AB|Mk

.
The resulting cryptogram is of the form C = (γ1, γ2, . . . , γk), γi = |C|mi

(i = 1, 2, . . . , k), C ∈ ZM .
Let us consider the realization of the procedure of encrypting the open

data block with the use of multiplicative and exponentiation operations over
the elements of finite fields in MRMNS. The choice of such a cryptographic
procedure is determined by the fact that it is not linear and a decryption
of the received information requires calculation of a discrete logarithm that
is very labor-consuming task.

Let the nonlinear cryptographic transformation be set by the relationship
C = |A · GB|Mk

, where A is the coded data block, B is the key sequence,
G is the chosen predetermined primitive number. Then the MRMC of the
cryptogram C is formed according to the expression

γi = |A ·GB|mi = |αi · gBi |mi (i = 1, 2, . . . , k). (9)

Since (gi,mi) = 1, then according to Fermat’s theorem from the number
theory [11] we have |gBi |mi = |g

|B|mi−1

i |mi .
Therefore,

γi = |αi · gβii |mi , (10)

where βi = |B|mi−1 (i = 1, 2, . . . , k).
To calculate the residues γi we will use the index method of realization

of multiplicative operations in the ring Zmi . If the residue αi is nonzero,
then in accordance with (1) and (2) we receive

γi = |g
indgi γi
i |mi = |αi · g

βi
i |mi = |g

indgi αi

i · gβii |mi =

= |gindgi αi+βi
i |mi = |g

| indgi αi+βi|mi−1

i |mi .

Thus, a nonlinear encrypting in the MRMNS is reduced to calculation of
an index

indgi γi = | indgi αi + βi|mi−1 (11)
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and its following conversion to the residue γi (i = 1, 2, . . . , k).
If the tables of indices and anti-indices are previously created by the

rules TIndi[χ] = indgi χ (χ ∈ Z∗mi
) and TAIndi[s] = |gi|s|mi−1 |mi (s =

0, 1, . . . , 2(mi − 2)), respectively, then according to (11) an encrypting pro-
cedure modulo mi requires one reading the table TIndi for the specification
of an index indgi αi, calculation of the sum s = indgi αi + βi and receiving
the resulting residue γi by the table TAIndi.

The considered operations are performed in parallel over all the modules
of the MRMNS. The resulting MRMC (γ1, γ2, . . . , γk) of the cryptogram C
enters into a communication channel.

Let us consider a decrypting procedure which is also carried out in the
MRMNS. It follows from (9) that for decrypting the cryptogram C it is
necessary to create the inverse key B−1 = (β−11 , β−12 , . . . , β−1k ) by the known
key B which is represented by a set of residues (β1, β2, . . . , βk) (see (10)).
Each value of β−1i (i = 1, 2, . . . , k) is calculated based on the following

congruence condition |gβii · g
β−1
i
i |mi = 1. Thus, |βi + β−1i |mi−1 = 0, i.e.

β−1i = mi− 1− βi. The component of the MRMC of the information block
A is decoded according to the formula

αi = |γi · g
β−1
i
i |mi (i = 1, 2, . . . , k). (12)

Therefore, similar to operation of nonlinear encrypting, the decrypting op-
eration is reduced to calculation of the index

indgi αi = | indgi γi + β−1i |mi−1 (13)

and its following conversion to the residue αi.
The positional code of a number A can be computed by its MRMC

(α1, α2, . . . , αk) according to the formula (4) within the parallel and pipelined
MCS of the table type [6, 7]. Thus, the proposed multiplicative encrypting
algorithm for the CSIS allows us to attain the essential increase in efficiency
at the acceptable volume of the tabular memory due to the code parallelism
and the tabular nature of the MA, the performance of realization of non-
modular operations of code conversions as well as simplicity of calculating
the index of a finite field element.

5. The realization of the modular model of CSIS

The choice of the type of cryptographic protection for the concrete in-
formation system depends significantly on its features and should base on
the comprehensive analysis of requirements imposed on the CSIS. The re-
alization of cryptographic algorithms can be carried out by means of the
software, hardware or firmware. The main advantage of the software realiza-
tion is its flexibility, i.e. the possibility of fast modification of cryptographic
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algorithms. The main shortcoming consists in the essential smaller perfor-
mance in comparison with the hardware; however this difference decreases
with the development of computer technologies. The firmware combines the
advantages of thesoftware and hardware realization.

The designed algorithm of nonlinear encrypting is characterized by the
maximum level of unloading of the real time computing process from the
labor-consuming calculations which can be realized by means of the look-
up tables formed at a stage of preliminary calculations. This gives the
possibility to use an extremely simple table-summation configuration of the
CSIS which only extracts residues from tabular memory and sums them
over the bases of the MRMNS.

The complete private key of the introduced cryptological algorithm con-
sists of the standard private key (the generated pseudorandom sequence)
and the secure algorithm information formed by all the possible choice al-
ternatives for operational bases of the MRMNS and the primitive elements
corresponding to them. A cryptographical security of the described algo-
rithm is determined by all possible choices of total keys.

For the cryptological algorithm given above the process of creation of
the CSIS includes three associated subsystems, namely: generation of total
private keys, encryption of the message and decryption of the cryptogram.

The following main procedures are realized in a subsystem of generation
of total keys:

1. The choice and storing of the sets of operational bases m1,m2, . . . ,mk

for coding the data block of the required length.
2. The choice and storing of the sets of primitive roots (g1, g2, . . . , gk).
3. The generation of the key B = (β1, β2, . . . , βk) for encrypting on the

basis of the generated pseudorandom sequence.
4. The determining and storing the key B−1 = (β−11 , β−12 , . . . , β−1k ) in-

verse to B.
5. The recording of the total keys in the database (the concrete com-

binations of the optional bases, the corresponding primitive elements, and
the keys B and B−1). The separate storage of the selected sets of the oper-
ational bases m1,m2, . . . ,mk, the primitive roots (g1, g2, . . . , gk) as well as
the keys B and B−1 allows us to set up the different combinations of the
total keys.

The computation of the MRMC of the information block and its en-
crypting is implemented in the encryption subsystem. The decryption of
the received ciphered block by means of the inverse key and the following
conversion of its MRMC to the binary code is performed in the decryption
subsystem. The use of the different variants of total private keys allows
us to construct the flexible and simply transformed CSIS that permits us
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to implement different models of encrypting with the use of the modular
principles of information processing.
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