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ElEctronic SyStEm Fault DiagnoSiS with optimizED multi-kErnEl SVm 
by improVED cpSo

Diagnoza uSzkoDzEń ukłaDu ElEktronicznEgo z wykorzyStaniEm 
wiElojąDrowEj maSzyny wEktorów nośnych (SVm) zoptymalizow-

anEj przy pomocy poprawionEgo algorytmu cpSo
Electronic systems’ safety operation has become a key issue to complex and high reliability systems. Now more emphasis has been 
laid on the accuracy of electronic system fault diagnosis. Based on the characteristics of the electronic system fault diagnosis, we 
design a multi-classification SVMs model to attain better fault diagnosis accuracy, which utilizes multi-kernel function consisting 
of several basis kernel functions to enhance the interpretability of the classification model. In order to optimize the performance 
of multi-classification SVMs with multi-kernel, we improve the Chaos Particles swarm Optimization (CPSO) algorithm to achieve 
the optimum parameters of SVMs and the multi-kernel function. For the improved CPSO algorithm, a modified Tent Map chaotic 
sequence is used to strengthen the search diversity, and an effective method is embedded to the stander PSO algorithm which can 
ensure to avoid premature stagnation and obtain the global optimization values. The fault diagnosis simulation results of an elec-
tronic system show the proposed optimization scheme is a feasible and effective method and it can significantly improve the fault 
diagnosis accuracy of the multi-kernel SVM.

Keywords: electronic system; fault diagnosis; support vector machine; chaos particles swarm optimization; 
multi-kernel.

Bezpieczeństwopracy układów elektronicznych stało się kluczowym zagadnieniem w odniesieniu do złożonych układów o wys-
okiej niezawodności. Obecnie coraz większy nacisk kładzie się na trafność diagnozy uszkodzeń układów elektronicznych. Na 
podstawie charakterystyki diagnozy uszkodzeń układów elektronicznych, opracowaliśmy model wielokryterialnej klasyfikacji 
SVM pozwalający osiągnąć lepszą trafność diagnozy uszkodzeń. Model wykorzystuje funkcję wielojądrową składającą się z kil-
ku bazowych funkcji jądrowych pozwalającą na zwiększenie interpretowalności modelu klasyfikacyjnego. Aby zoptymalizować 
działanie modelu wielokryterialnej klasyfikacji SVM wykorzystującego funkcję wielojądrową, udoskonaliliśmy algorytm Opty-
malizacji Metodą Chaosu-Roju Cząstek (CPSO), co pozwoliło osiągnąć optymalne parametry SVM i funkcji wielojądrowej. W 
poprawionym algorytmie CPSO wzmocniono różnorodność wyszukiwania poprzez wykorzystanie chaotycznej sekwencji generow-
anej przez zmodyfikowaną mapę tent, a także włączono do standardowego algorytmu PSO efektywną metodę pozwalającą uniknąć 
przedwczesnej stagnacji oraz uzyskać globalne wartości optymalizacji. Wyniki symulacji diagnozy uszkodzeń systemu elektronic-
znego pokazują, że proponowany system optymalizacji może być wykorzystywany jako skuteczna metoda umożliwiająca znaczne 
zwiększenie trafności diagnozy uszkodzeń z wykorzystaniem wielojądrowej SVM.

Słowa kluczowe: układ elektroniczny, diagnoza uszkodzeń, maszyna wektorów nośnych, optymalizacja metodą 
chaosu-roju cząstek; funkcja wielojądrowa.

1. Introduction

Electronic diagnosis is always an important research field of fault 
diagnosis. With the rapid development of the electronic technology in 
recent years, [21] more and more electronic systems become critical 
components of the whole system, and their safety also become the 
key issue to the system reliability. Thus, according to the information 
collected from the test ports, inferring the state condition, determining 
the fault location, forecasting the future failure and then giving the 
necessary maintenance tips have great significances to accomplishing 
the missions successfully.

However, electronic system fault diagnosis is complexity and dif-
ficulty in many cases. For example, one fault phenomenon always 
shows with several fault modes. We need to solve multi-classification 

fault diagnosis problem. In recent years, some intelligent classifica-
tion methods, such as artificial neural network (ANN) [10], Support 
Vector Machine (SVM) [5], etc. have been applied to electronic sys-
tem fault diagnosis. As a state-of-the-art learning method based on 
the statistical learning theory, SVM not only characterizes a simple 
model structure, but also has excellent classification in solving learn-
ing problem with small training sample set. [9, 30] It can solve the 
problems of “over fitting”, local optimal solution and low-conver-
gence rate existing in ANN. Moreover, SVM has better generaliza-
tion performance than ANN due to its risk minimization principle.
[15] Thus, SVM has received more extensive attention and achieved 
superior performance in electronic system fault diagnosis. However, 
SVM also has two main drawbacks in practical application of multi-
classification fault diagnosis.[15, 34]
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Firstly, because SVM is originally designed for binary-class clas-
sification, we must combine several binary-SVMs for the multi-clas-
sification with a suitable structure, such as “one-against-rest”, “one-
against-one”, “decision directed acyclic graph (DDAG)”, etc. [4, 16, 
34] But the performance does not seem satisfactory as much as the 
binary classification. This may be due to that, whatever the scheme 
is, each binary-SVM must train at least two class fault mode data, i.e., 
we must look at least two different class data as same class. Generally, 
an appropriate kernel for one class fault mode data does not always 
conduct to the others. So, it is difficult to attain good results by the 
reported schemes.

Secondly, it is difficult to select the appropriate parameter values 
of the SVM model, which have a great impact on the generalization 
capability and model accuracy. Researchers proposed many optimiza-
tion methods to solve the problem, such as genetic algorithm, particles 
swarm optimization (PSO) algorithm, etc. [17]. But these methods 
involve too many human factors or requirements, for example, the 
kernel function should be continuously differentiable, and the results 
of SVM classifier are prone to failing into the local minimum. 

In order to overcome above shortcomings, we propose a new 
scheme to improve the classification performance of electronic system 
fault diagnosis. This scheme includes two parts: One is to design a ap-
propriate multi-classification SVMs model using several multi-kernel 
SVMs, which depends on the characteristics of electronic system fault 
diagnosis and can mine the information in the data more effectively. 
The other one is to improve the chaotic particles swarm optimiza-
tion (CPSO) algorithm to optimize the parameters of the classifier, 
which can avoid the premature stagnation and ensure to obtain the 
best parameters values combination. The feasibility and efficiency of 
the proposed scheme for electronic system fault diagnosis are verified 
via application experiments.

The remainder of the paper will be structured as follows: Section 2 
gives a brief introduction of SVM and stander PSO algorithm; Section 
3 proposes the scheme of electronic fault diagnosis with multi-kernel 
SVM and the improved CPSO algorithm; Section 4 shows application 
experiments of electronic system fault diagnosis; and Section 5 gives 
the conclusions.

2. Related work review

2.1. Support vector machines

As a machine-learning algorithm, SVM integrates the optimal 
separating hyper-plane with the kernel method. Its resolution has 
good generalization capability, and the generalization capability is 
independence of the particular sample distribution. The performance 
of SVM is mainly referred to its generalization capability, namely the 
capability of recognizing the new data, and availability to the situa-
tion of small samples.[9, 15, 30] SVM is more suitable for electronic 
system fault diagnosis, because electronic system always shows non-
linear, complexity and diversity features. 

Consider n  training data ix and the corresponding labels 

iy ( 1, 2, ...,i n= ). In the simplest form, SVM will yield a hyper-plane 

that separates the training data by a maximal margin. The data lying 
on one side of the hyper-plane are labeled as +1, and the other data 
lying on the other side are labeled as −1. The training data that lie 
closest to the hyper-plane are called support vectors. In the case of 

linearly data, it is possible to determine the hyper-plane =0Tw x b+  

that separates the given data, where w  and b  are used to define the 
position of the separating hyper-plane. It is easy to find that the pa-

rameter pair ( ,w b ) corresponding to the optimal hyper-plane is the 
solution to the following optimization problem:
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For linearly non-separable cases, there is no such a hyper-plane 
that is able to classify every training sample correctly. So the opti-
mization idea is generalized via the concept of soft margin. The new 
optimization problem thus becomes:
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where ξi is called slack variables related to the soft margin, and c is 
the tuning parameter used to balance the margin and training error. 
Both optimization problems (see Eq. (1) and Eq.(2)) can be solved by 
the Lagrange multipliers αi that transform them to quadratic program-
ming problems.

For the applications, linear SVM does not meet satisfactory per-
formance, non-linear SVM is more often applied. The basic idea of 

designing a non-linear SVM model is to map the input vector nRx∈  
into a high-dimensional feature space to solve a non-linear classifica-
tion problem. Here the mapping function φ(x), called kernel function, 
is selected in advance. The kernel function can perform a non-linear 
mapping to a high-dimensional feature space by replacing the inner 
product for non-linear pattern problem, which performs the non-linear 
mapping. The kernel functions are Mercer functions which meet Mer-
cer condition, and the approximating feature map for the Mercer ker-

nel is k x y x yT( , ) ( ) ( )= ϕ ϕ . The main basis kernel functions are 

listed as follows:

Linear kernel function: (1)	 ( , ) ( )k x y x y= ⋅

Polynomial kernel function: (2)	 k x y s x y d( , ) ( ( ) )= ⋅ + γ

RBF kernel function: (3)	 k x y
x y

( , ) exp( )= −
− 2

22σ

Sigmoid kernel function: (4)	 k x y s x y( , ) tanh( ( ) )= ⋅ + γ

The learning algorithm for a non-linear classifier SVM follows 
the design of an optimal separating hyper-plane in a feature space. 
The procedure is the same as associated with hard and soft margin 
classifier SVMs in the x -space. Using the chosen kernel function, 
the Lagrangian is maximized in the corresponding high-dimensional 
feature space as follows:
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where the constraints must be revised by a non-linear soft margin 
classifier SVM. The unique difference between these constraints 
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and the separable non-linear classifiers is in the upper bound c and 
the Lagrangian multipliers αi. The constraints of the optimization 
problem become as follows:

 subject to i i
i

n

iy c i n : , , , , ...,α α
=
∑ = ≥ ≥ =

1

0 0 1 2      (4)

This way, the influences of the training data will be limited and 
remained on the wrong side of a separating non-linear hyper-plane. 
The non-linear SVM classifier is described below:

 f x i i iy K x x b
i

l

( ) sgn( ( , ) )=
=

∑ +α
1

 (5)

where l  presents the number of support vectors.

2.2. Stander particles swarm optimization algorithm

Compared with the other optimization algorithms, PSO algorithm 
is a kind of global search algorithm with many merits, such as simple 
concept, fast convergence rate, etc. It has been successfully applied 
in many fields. [6, 28] The stander PSO algorithm was proposed by 
James Kennedy and Eberhart, which is derived from the simulations 
of the birds in finding foods [12, 25, 32]. The basic idea of the stand-
er PSO algorithm is to optimize the solution to every problem as a 
particle which searches the optimal value by sharing the historical 
information and the social information amount the particle individu-
als. Each particle flights with a certain speed in the D -dimensional 
search space, and uses the fitness function to judge the merits of par-
ticles, particle flying experience of its own and other particles flying 
experiences. Then the speeds and best location of the particle group 
are adjusted dynamically, finally the optimal solution of optimization 
problems is given. 

Assume m particles and form themselves into a particles swarm in 
a D -dimensional search space, 1 2( , , ..., )i i i iDx x x x=  denotes the 

position of the i -th particle, and 1 2( , , ..., )i i i iDv v v v=   denotes the 

velocity of the i -th particle. The best position of a particle is

1 2( , , ..., )i i i iDp p p p= , and the best position of the whole swarm is

1 2
( , , ..., )

g g g gD
p p p p= . Therefore the position and velocity of the 

particles in the particles swarm can be expressed as follows:

( 1) ( ) (0, 1) [ ( ) ( )] (0, 2) [ ( ) ( )]

( 1) ( ) ( 1) 1, 2,...,
id id id id gd id

id id id

v k v k rand c p k x k rand c p k x k

x k x k v k d D

w+ = ⋅ + ⋅ − + ⋅ −

+ = + + =



  

where 1c  and 2c  are acceleration constants which, respectively, stand 
for the weights of the accelerations, and by which, a particle flies to-
wards the individual local best position or the best global position;

(0, 1)rand c  and (0, 2)rand c  are the random numbers evenly distrib-

uted in [0, 1]c  and [0, 2]c respectively. If 1 0c = , the particle only has 
self-experience which means that its convergence rate may be fast, 
and it is easy to fall into the local optimum. If 2 0c = , the particle only 
has social experience which means that all particles in a swarm be-
come moving by themselves without interaction, and the probability 

of finding a solution is very low. The velocity idv  is generally condi-

tion by max max[ , ]idv v v∈ −  to prevent the particles from flying out of 

the solution area. ω is an inertial weight which denotes the influence 

of the previous velocity of a particle upon its current velocity. The 

bigger ω means the bigger velocity idv and search space for the parti-

cles, which helps to find the new solution space. The smaller ω means 

the smaller velocity idv , which helps to find a better solution in the 

current solution space. ω is always defined as follows [35]:

 ω ω
ω ω

= −
−

×max
max min

maxIter
Iter  (7)

where ωmax is the initial inertia weight factor, ωmin is the final inertia 

weight factor, Iter  is the current iteration number, and maxIter is the 
maximum iteration number.

3. Optimization multi-kernel SVM by improved CPSO

For SVM, the penalization parameter c , kernel function and its 
parameters are the main factors which influence the classification per-
formance [3, 29]. Therefore, in order to obtain good generalization 
capability of SVM, one of the main issues is to select the appropriate 
c , kernel function and its parameters. In this section, aiming at the 
characters of electronic fault diagnosis, we apply multi-kernel SVM 
to enhance the generalization capability and exploit more discrimina-
tive information in sample data. In addition, we propose an improved 
CPSO, called ICPSO, to jointly optimize the parameters of multi-
kernel SVM.

3.1. Improved CPSO algorithm

According to Ref. [7], the performance of standard PSO algorithm 
mainly depends on the number of particles and initial parameters. We 
can see from Eq.(6) that current individual local position is attracted 
not only by its own current local best position but also by the best 
global position. If both of the local best position and the best global 
position are local optima, the particles will repeat the same search 
path, called premature stagnation. The Eq. (6) doesn’t offer a method 
of jumping out of the premature stagnation. In this paper, an improved 
CPSO (ICPSO) algorithm is proposed to enhance the search diversity 
and to overcome the premature stagnation. 

3.1.1. Initialization of particles

The initialization of the particles of stander 
PSO algorithm always adopts a random distribu-
tion strategy, but it is difficult to ensure better 
ergodicity of the initial particles swarm. Chaos is 
an universal phenomenon of non-linear systems 
[18]. In general, chaotic motion is not haphazard, 

and the chaotic variable has three main properties, such as ergodic-
ity, randomness and sensitivity to initial conditions. Using these char-
acteristics, the chaos optimization algorithm is utilized to solve the 
problem of the particles initialization.

Different chaos map functions have great different influences on 
chaotic optimization search. Logistic map is more often used in re-
search and application currently. Ref. [2, 19, 20, 24] point out that 
Tent map has better ergodic homogeneity and higher iterative evolu-
tion velocity than Logistic map via mathematical analysis and simula-
tion verification. In this paper, we modify stander Tent map function 
and use it for the chaotic search. The stander equations of Tent map 
function are shown as follows:

(6)
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Here we modify Eq.(8) with the following constrained condition. 
If { }0, 0.25, 0.5, 0.75nx =  or { }, 0,1, 2, 3, 4n n mx x m

−
= = , then

0.1 (0,1)
n n

x x rand+ ×→ . In practice, because the optimization 

ranges of every parameters are different, we will carry interval [0, 1] 
of the chaotic variables to define the rang of the particles swarm solu-
tion vectors. 

3.1.2. Judgment of premature stagnation

In the iteration process of each particle, if the premature stagna-

tion happens, i.e., the best global position of the whole swarm 
g

p is 
unchanged within N  times iterations, which means that the particles 
swarm has already or will be fall into local optima. Here, the value of 
N  can be set in advance according to the scale of the problem or the 

experimental results. Generally, the bigger N  means the standard of 
the judgment of premature stagnation is more lax. Base on this idea, 
some researchers[8] applied to embed a premature stagnation counter , 
called K , into the PSO algorithm, K  is used to count the number 

of stagnation. If 
g

p is same as the previous value, then K adds 1, 
otherwise K  is cleared to zero. When K  is up to the limit time N , a 
mechanism will run to help the particles to jump out of the local op-
timum. Obviously, this process will consume more computation time 
in practice, thus we propose to leave this judgment process out, this 

means that 
g

p
 
will be replaced by a new value at each iteration proc-

ess step.
According to the Eq.(6), the next location of particles depends on 

the current position and speed. The current speed is the key of the par-
ticles swarm optimization since it makes the particles to have better 
movement and enhance the diversity of the particles swarm. The cur-
rent speed depends on three main factors, called previous speed, the 

best position of each particle ip
 
and the global best position

g
p . It is 

obvious that 
g

p  plays a vital role in information exchange among the 

particles and the convergence rate increase. With the pulling of 
g

p , the 
stander PSO algorithm may lose their diversity of the particles swarm 
and the premature convergence is more likely to happen during the 
evolutionary process. In order to enhance the diversity of the particles 

swarm and avoid premature convergence. We develop 
g

p  as follows 
at each evolution step.

 
1

1 m

g i

i

gp p p
m =

=→ ∑  (9)

Eq.(9) indicates that the global best place gp  will be replaced by 

the center of all individual best places 
g

p . Then the new equations 
of the position and velocity of the particles in the swarm are shown 
as follows:

From Eq.(10), we can see that the new improved algorithm not 
only remains the simplicity of the standard PSO algorithm, but also 
makes the particles to have the capability of jumping out of local op-

timal position. 
g

p  improves the diversity of the particles swarm, and 

it plays the same effect as the 
g

p . In fact, this scheme is also accord-

ance with the social and psychological habits, that is, particles not 
only want to move closer to the best but also hope to be the “majori-

ty”. Here the “majority” is 
g

p , the center of all individual best places. 

This way, the new ICPSO algorithm can reduce the invalid iteration 
effectively and improve the convergence rate greatly as well as the 
optimization accuracy.

3.2. Optimization of multi-kernel SVM

3.2.1. Multi-kernel SVM

The kernel function and corresponding kernel parameters are the 
key issue affecting the model prediction accuracy. An efficient ker-
nel function should represent sample data adaptively. General kernel 
methods use a single kernel function and choose consistent param-
eters for the whole sample data sets. In reality, the distributions of the 
sample data in the different mapping space are different. So MKL was 
proposed by Lanckriet et al. [13] 

MKL is an active research topic in the field of machine learning 
and it provides a more flexible framework than a single kernel. MKL 
mines information in data more adaptively and effectively, especially 
in enhancing the interpretability of the classification function and im-
proving its performance.

In the MKL framework, a combined kernel function is defined as 
the weighted sum of the individual basis kernels. MKL aims to opti-
mize combining weights while training the SVM-based methods [11, 
31]. Though researchers proposed a variety of methods of integrate 
multiple kernels, linear convex combination of basis kernels is still 
one of the most frequently used approaches. With this method, each 
basis kernel can exploit the full set of features, or use a subset of fea-
tures. So, using the equations described by Sonnenburg et al. [26], we 
consider the combined kernel as follows:

 

k x x k x xp q j j p q
j

m

subject to

j

j
j

m

j

( , ) ( , )

:

, , ...

=
=
∑

=

≥ =

=

∑

µ

µ

µ

1

1

0
1

1 2

 

,, m







 (11)

where m is the number of basis kernels,  μj is the combining weight of 
the j-th basis kernel. According to the properties of kernel function[22], 
k is Symmetric Positive Semidefinite Matrix, i.e., k≥0. Afterward, all 
kernel matrices kj are normalized by replacing kj(xp, xq) by the follow-
ing equation to get unit diagonal matrices:

 k x x
k x x

k x x k x xj p q
j p q

j p p j q q

( , ) ( , )
( , ) ( , )

→      (12)

Based on MKL and Schur complement 
lemma [11, 27], the solution problem of μj can 
be cast to the form of quadratically constrained 

v k v k rand c p k x k rand c pid id id id( ) ( ) ( , ) [ ( ) ( )] ( , ) [+ = ⋅ + ⋅ − + ⋅1 0 1 0 2ω ggd id

id id id

k x k

x k x k v k d D
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 1 1 1 2 (10)
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quadratic program (QCQP). The objective of QCQP is convex in μj 
and Lagrange multipliers αi. Such a QCQP problem can be solved 
efficiently by the interior point methods. The obtained dual variables 
can be used to solve the optimal kernel coefficients.

Although some reported optimization software packages, such as 
MOSEK [1], can solve the primal and dual problems simultaneously, 
it is also complex and not unfit for application. In this paper, because 
the combination of several basis kernels is a linear combination, we 
propose to use joint optimization method to determine the combining 
weights of the new multi-kernel. This way can not only reduce the 
computation complexity comparing with MOSEK, but also obtain the 
best parameters’ values combination.

3.2.2. Optimization steps of multi-kernel SVM

In the ICPSO algorithm, the chaotic sequence is used to initiate 
individual position, which strengthens the diversity of search, and the 
stander PSO algorithm with new global best place is mainly used to 
perform a global search. The process of ICPSO is given below.
Step 1: Initialize each parameter, such as population size m, the stop-

ping criterion (maximum number of iterations) maxIter , displace-
ment genes 1c  and 2c , weight ωmax and ωmin, maximum velocity 

max
v . Let the maximum iteration counter =0J ;

Step 2: Assign the initial location and velocity with the Eq. (8) randomly; 
Step 3: Evaluate the fitting degree of each particle, and let initial individ-

ual best position to be ip  and let initial global best position to be
gp ;

Step 4: Update the position and speed of each particle based on Eq.(6) 
and Eq.(7);

Step 5: Calculate the new fitting degree of each particle and replace

gp by 
gp according to Eq. (9);

Step 6: The maximum iteration counter J  plus one, and if maxJ Iter<
 
, 

return to step 4. Otherwise end the iteration computation and out 

put the current
gp .

4. Application experiments of electronic system fault 
diagnosis

4.1. Case representation

Electronic system faults always exist multiple fault modes simul-
taneously. A local circuit of a certain electronic system is shown in 
Fig.1. In order to obtain the sample data for information fusion, we 
measure 7 voltage values with many times at the measuring points 
called A, B, C, D, E, F and G (with pentagrams representation). In this 
case, F1 indicates normal mode, F2, F3, and F4 indicate three fault 
modes respectively: circuit board damaged mode, chip burned mode 
and pins broken mode.

4.2. Design and optimization of multi-classification SVMs

Because the extension of SVM to multi-classification problems 
is not straightforward, multi-classification SVMs should be designed 
in this case. Ref. [37] addressed the existing representative multi-
class classification methods with SVM and compared their merits 
and defects systematically. The popular methods applying SVMs to 
multi-class classification problems decompose the multi-class classi-
fication problems into many binary-class classification problems and 
incorporate many binary-class SVM [14, 23, 33]. For example, an N
-class classification problem needs ( 1) / 2N N −  binary-class classi-
fication SVMs with the “one-against-one” approach, while N  SVMs 

for the “one-against-Rest” approach. Although the “one-against-one” 
approach demonstrates superior performance, it may require prohib-
itively-expensive computing resources in many real-world problems. 
The “one-against-rest” approach shows less accuracy, and demands 
heavy computing resources, especially for the real-time applications. 

Based the conclusions of Ref. [37], we establish a multilayered 
classification structure in this paper. Firstly, we classify the normal 
mode and fault modes using SVM1 to achieve the purpose of fault 
detection, and then we use the “DDAG” approach to execute fault pat-
tern recognition, such as recognizing circuit board damaged mode and 
chip burned mode via SVM2, recognizing chip burned mode and pins 
broken mode via SVM3, recognizing circuit board damaged mode 
and pins broken mode via SVM4. The multi-classification SVMs 
model is shown in Fig. 2. 

Based on Fig.2, we choose appropriate basis kernel functions 
firstly, and then use the proposed ICPSO algorithm to achieve the op-
timal parameters’ values combination of the multi-kernel SVM. Here 
we choose the average test set accuracy (TSA) [11] for the sample 
data as evaluation criteria (fitting function). The TSA is defined as 
follows:

 σ =
+

y
y y

t

t f

 (13)

where ty  and fy  represent the number of true and false classification 
respectively. That SVM has higher TSA means the model is a better 
model. The main steps of fault diagnosis are shown as follows
Step 1: Choose sample data via unitary processing and divide them 

into two parts: training set and testing set;
Step 2: Jointly optimize the parameters of each multi-kernel SVM 

using the ICPSO algorithm and establish the multi-classification 
multi-kernel SVMs; 

Step 3: Train each multi-kernel SVM of multi-classification SVMs;

Fig. 1. Local circuit with faults of certain electronic system

Fig. 2. Fault class flow chart with multi-classification SVMs



Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol.16, No. 1, 201490

sciENcE aNd tEchNology

Step 4: Verify fault diagnosis accuracy of the multi-classification mul-
ti-kernel SVMs using the testing set.

4.3. Experiments and discussion

We collect 1000 voltage values as the sample data from the seven 
test points (see Fig.1). After unitary processing, we divide them into 
two parts: 500 data as training set and 500 data as testing set. The 
number of each fault mode is shown in Tab.1.

In this study, we perform two experiments. Experiment I com-
pares the multi-classification multi-kernel SVMs on fault detection 
rate (FDR) and fault detection accuracy (FDA) using ICPSO, CPSO 
and GA respectively. Here we choose one linear kernel function which 
represents global information and one RBF function which represent 
local information [36] as basis kernel functions. Experiment II com-
pares single RBF SVM with multi-kernel SVM on FDR and FDA. 
The multi-kernel SVM has same basis kernel functions as experiment 
I. Their parameters are optimized by ICPSO in experiment II. 

The same set of parameters is assigned for the two experiments: 
m=20, D=4 (represent the two combination coefficients of the Multi-
kernel, the penalization parameter c and the width of RBF σ respec-

tively), ωmax =1.2, ωmin =0.2, 1 2c c= =2, maxv =15 and maxIter =300. 
The results are reported in Tab. 2 and Tab. 3.

Tab. 2 and Tab. 3 show that the multi-classification multi-kernel 
SVMs with optimization parameters by ICPSO have better FDR and 
FDA. This indicates that the proposed ICPSO algorithm is a better 
optimization method. Moreover, multi-kernel learning method can 
enhance the interpretability of the classification function and it is an 
effective approach to improve performance of SVM-based classifier 
considerably.

5. Conclusions

The reliability of electronic system has attracted more attention, 
and SVM is widely applied in the electronic system fault diagnosis. 
In many reality cases, the parameters of SVM and its kernel function 
have great impact with the classification accuracy and generalization 
capabilities. In order to attain satisfactory fault diagnosis results of 
electronic system, we design a multi-classification multi-kernel SVMs 
model to perform classification. We propose an improved CPSO al-
gorithm to achieve the optimal parameters’ values combination of the 
electronic fault diagnosis model. In the ICPSO algorithm, a modified 
Tent map chaotic sequence is used to initiate individual position, and 
a new scheme is embedded into the stander PSO algorithm to avoid 
premature stagnation. The feasibility and efficiency of the proposed 
scheme have been verified via the application experiments.
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Table 1. Number of the fault modes in the sample data

Type Normal
Fault Mode

Circuit Board 
Damaged

Chip 
Burned pins Broken

Training set 112 138 150 100

Testing set 146 121 113 120

Table 2. Results of fault diagnosis experiment I (compare with ICPSO, CPSO 
and GA)

Algorithm
Fault Detec-

tion Rate (FDR)

Fault Detection accuracy ( FDA )

Circuit Board 
Damaged Chip Burned pins Broken

ICpsO 93.2% 94.2% 95.6% 92.5%

psO 90.4% 89.3% 92.9% 90.8%

GA 90.0% 89.3% 91.2% 91.7%

Table 3. Results of fault diagnosis experiment II (compare with RBF and multi-
kernel)

Algorithm
Fault Detec-

tion Rate 
(FDR)

Fault Detection Accuracy ( FDA )

Circuit 
Board Dam-

aged

Chip 
Burned

pins 
Broken

Method with Multi-
kernel 93.2% 94.2% 95.6% 92.5%

Method with RBF 87.2% 86.8% 91.2% 83.3%
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