PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of Trace Elements, Rare Earth Elements and Ecotoxicity in Sediments of the Kosva Bay, Perm Region (Russia)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Over a long period of time, a huge amount of technogenic bottom sediments has been accumulating in the Kosva Bay with significant concentrations of amorphous iron and aluminium hydroxides, which, in turn, are active sorbents of pollutants. This study examines the distribution of trace elements and rare earth elements and their toxicity in the Kosva Bay of the Kama Reservoir (Perm Region, Russia). In the middle reach, the Kosva River crosses the Kizel coal basin, where acid mine water is discharged from closed mines. The average content of trace elements in the samples of bottom sediments of the bay varies from 0.10 mg/kg (Se) to 176.36 mg/kg (Ba). The amount of rare earth elements varies from 66.8 to 83.6 mg/kg. The ecological significance of trace elements and rare earth elements was studied using an element-by-element assessment (EF and Igeo), Potential Ecological Risk Index (RI), Mean Probable Effect Concentration Quotient (PECQ), and two bioassays (Daphnia magna Straus and Scenedesmus quadricauda (Turp.) Breb. The highest Hg enrichment was found at two sampling points. Taking into account the average value of Igeo, the pollution by Co, V, Nb, Hg, Sn, Zn, Sm, Ni, Cr, and Gd is the highest and corresponds to extremely contaminated category. The RI values indicate that pollution categories vary from moderate risk to considerable risk. According to mean PECQ values, bottom sediments of the bay have moderate potential toxicity towards biological communities. Results of chronic and acute toxicity on test objects D. magna and Scenedesmus quadricauda Breb show the water extract from bottom sediments having no effects on the test objects. The results of the study show that in order to assess the quality of bottom sediments, an integrated approach, combining chemical and ecotoxicological analyses, is needed.
Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Natural Science Institute, Perm State University, Genkel St. 4, 614990 Perm, Russia
  • Natural Science Institute, Perm State University, Genkel St. 4, 614990 Perm, Russia
  • Natural Science Institute, Perm State University, Genkel St. 4, 614990 Perm, Russia
  • Natural Science Institute, Perm State University, Genkel St. 4, 614990 Perm, Russia
  • Natural Science Institute, Perm State University, Genkel St. 4, 614990 Perm, Russia
Bibliografia
  • 1. Adeel M., Lee J.Y., Zain M., Rizwan M., Nawab A., Ahmad M.A., Shafiq M., Yi H., Jilani G., Javed R., Horton R., Rui Y., Tsang D., Xing B. 2019. Cryptic footprints of rare earth elements on natural resources and living organisms. Environment international, 127, 785–800. https://doi.org/10.1016/j.envint.2019.03.022
  • 2. Allafta H., Opp C. 2020. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Scientific reports, 10(1), 6979. https://doi.org/10.1038/s41598-020-63893-w
  • 3. Alvarenga P., Guerreiro N., Simões I., Imaginário M.J., Palma P. 2021. Assessment of the Environmental Impact of Acid Mine Drainage on Surface Water, Stream Sediments, and Macrophytes Using a Battery of Chemical and Ecotoxicological Indicators. Water, 13, 1436. https://doi.org/10.3390/w13101436
  • 4. Balkis N., Aksu A., Okuş E., Apak R. 2010. Heavy metal concentrations in water, suspended matter, and sediment from Gökova Bay, Turkey. Environmental monitoring and assessment, 167(1–4), 359–370. https://doi.org/10.1007/s10661-009-1055-x
  • 5. Baran A., Tarnawski M., Koniarz T. 2016. Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir, Silesian-Poland. Environ Sci Pollut Res Int, 23(17), 17255–17268. https://doi.org/10.1007/s11356-016-6678-1
  • 6. Boguta P., Skic K., Baran A., Szara-Bąk M. 2022. The influence of the physicochemical properties of sediment on the content and ecotoxicity of trace elements in bottom sediments. Chemosphere, 287(Pt 4), 132366. https://doi.org/10.1016/j.chemosphere.2021.132366
  • 7. Borrego J., Carro B., López-González N., de la Rosa J., A. Grande J.A., Gómez T., De la Torre M.L. 2012. Effect of acid mine drainage on dissolved rare earth elements geochemistry along a fluvial–estuarine system: the Tinto-Odiel Estuary (S.W. Spain). Hydrology Research, 43(3), 262–274. https://doi.org/10.2166/nh.2012.012b
  • 8. Borrego J., López-González N., Carro B. 2004. Geochemical signature as paleoenvironmental markers in Holocene sediments of the Tinto River estuary (Southwestern Spain) Estuarine. Coastal and Shelf Science, 61(4), 631–641. https://doi.org/10.1016/j.ecss.2004.07.004
  • 9. Byrne P., Reid I., Wood P.J. 2013. Changes in macroinvertebrate community structure provide evidence of neutral mine drainage impacts. Environmental science. Processes & impacts, 15(2), 393–404. https://doi.org/10.1039/c2em30447c
  • 10. Chan W.S., Routh J., Luo C., Dario M., Miao Y., Luo D., Wei, L. 2021. Metal accumulations in aquatic organisms and health risks in an acid mineaffected site in South China. Environmental geochemistry and health, 43(11), 4415–4440. https://doi.org/10.1007/s10653-021-00923-0
  • 11. Chen H., Chen Z., Chen Z., Ou. X., Chen J. 2020. Calculation of Toxicity Coefficient of Potential Ecological Risk Assessment of Rare Earth Elements. Bull Environ Contam Toxicol, 104, 582–587. https://doi.org/10.1007/s00128-020-02840-x
  • 12. Daesslé L.W., Lugo-Ibarr, K.C., Tobschall H.J., Melo M., Gutiérrez-Galindo E.A., García-Hernández J., Alvarez L.G. 2009. Accumulation of As, Pb, and Cu associated with the recent sedimentary processes in the Colorado delta, South of the United States-Mexico boundary. Archives of environmental contamination and toxicology, 56(4), 680–692. https://doi.org/10.1007/s00244-008-9218-2
  • 13. Dauvalter V.A. 2012. Geoecology of lake sediments. Murmansk: Murmansk STU, 242. (in Russian)
  • 14. Federal Register FR 1.39.2007.03222. 2007. Methodology for determining the toxicity of water and water extracts from soils, sewage sludge, and waste by mortality and changes in fertility of daphnias. Moscow: Akvaros, 51.
  • 15. Federal Register FR 1.39.2007.03223. 2007 Methodology for determining the toxicity of water and aqueous extracts from soils, sewage sludge, waste by mortality and changes in chlorophyll fluorescence levels and algae cell numbers. Moscow: Akvaros, 48.
  • 16. Fetisova N.F. 2021.Study of migration forms of metals in rivers affected by acid mine drainage of the Kizel coal basin. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 332(1), 141–152. https://doi.org/10.18799/24131830/2021/1/3007
  • 17. Fiket Z., Mikac N., Kniewald G. 2017. Influence of the geological setting on the REE geochemistry of estuarine sediments: A case study of the Zrmanja River estuary (eastern Adriatic coast). Journal of Geochemical Exploration, 182(Pt A), 70–79. https:// doi.org/10.1016/j.gexplo.2017.09.001
  • 18. Fonseca R., Pinho C., Albuquerque T., Araújo J. 2021. Environmental Factors and Metal Mobilisation in Alluvial Sediments–Minas Gerais, Brazil. Geosciences, 11(3), 110. https://doi.org/10.3390/geosciences11030110
  • 19. Gala´n E., Go´mez-Ariza J.L., Gonza´lez I., Ferna´ndez-Caliani J.C., Morales E., Gira´ldez I. 2003. Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.
  • 20. Galhardi J.A., Bonotto D.M. 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environ Sci Pollut Res, 23, 18911–18927. https://doi.org/10.1007/s11356-016-7077-3
  • 21. Gorgulenko V.V., Yanygina L.V. 2014. Ecotoxicological assessment of water and bottom sediments Novosibirsk reservoir. Water resources, 41(3), 284–292. https://doi.org/10.1134/S0097807814030063
  • 22. Hakanson L. 1980. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Research, 14(8), 975–1001.
  • 23. Iqbal J., Shah M.H. 2015. Study of Selected Metals Distribution, Source Apportionment, and Risk Assessment in Suburban Soil, Pakistan. Journal of Chemistry, 2015(2–3), 1–8. http://dx.doi.org/10.1155/2015/481324
  • 24. Jung H.B., Yun S.T., Mayer B., Kim S.O., Park S.S., Lee P.K. 2005. Transport and sediment-water partitioning of trace metals in acid mine drainage: An example from the abandoned Kwangyang Au-Ag mine area, South Korea. Environmental Geology, 48(4–5), 437–449. https://doi.org/10.1007/s00254-005-1257-7
  • 25. Koukina S.E., Lobus N.V., Shatravin A.V. 2021. Dataset on the abundance, enrichment and partitioning of chemical elements between the filtered, particulate and sedimentary phases in the Cai River estuary (South China Sea). Data in brief, 38, 107412. https://doi.org/10.1016/j.dib.2021.107412
  • 26. Kulbat E.,•Sokołowska A. 2019. Methods of assessment of metal contamination in bottom sediments (Case study: Straszyn Lake, Poland). Archives of Environmental Contamination and Toxicology, 77, 605–618. https://doi.org/10.1007/s00244-019-00662-5
  • 27. Kublitskiy Y., Kulkova M., Druzhinina O., Subetto D., Stančikaitė M., Gedminienė L., Arslanov K. 2020. Geochemical Approach to the Reconstruction of Sedimentation Processes in Kamyshovoye Lake (SE Baltic, Russia) during the Late Glacial and Holocene. Minerals, 10, 764. https://doi.org/10.3390/min10090764
  • 28. Krasilnikova S.A., Blinov S.M. 2017. Effects of acid mine water discharge in the Kizel coal basin. Natural and Technical Sciences, 11(113)С, 153–154.
  • 29. Lecomte K.L., Maza S.N., Collo1 G., Sarmiento A.M., Depetris P.J. 2017. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Environ Sci Pollut Res, 24, 1630–1647. https://doi.org/10.1007/s11356-016-7940-2
  • 30. Lee S.H., Kim I., Kim K.W., Lee B.T. 2015. Ecological assessment of coal mine and metal mine drainage in South Korea using Daphnia magna bioassay. Springer Plus, 4, 518. https://doi.org/10.1186/s40064-015-1311-1
  • 31. Li H., Yang J., Ye B., Jiang D. 2019. Pollution characteristics and ecological risk assessment of 11 unheeded metals in sediments of the Chinese Xiangjiang River. Environmental geochemistry and health, 41(3), 1459–1472. https://doi.org/10.1007/s10653-018-0230-9
  • 32. Lin C., He M., Liu X., Guo W., Liu S. 2013. Distribution and contamination assessment of toxic trace elements in sediment of the Daliao River System, China Environ Earth Sci, 70, 3163–3173. DOI 10.1007/s12665-013-2382-3
  • 33. López-González N., Borrego J., Carro B., Grande J. A., De la Torre M. L., Valente T. 2012. Rareearth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: A case study in SW Spain. Boletín Geológico y Minero, 123(1), 55–64.
  • 34. Luo C., Routh J., Dario M., Sarkar S., Wei L., Luo D., Liu, Y. 2020. Distribution and mobilization of heavy metals at an acid mine drainage affected region in South China, a post-remediation study. The Science of the total environment, 724, 138122. https://doi.org/10.1016/j.scitotenv.2020.138122
  • 35. Macdonald D.D., Ingersoll C.G., Berger T.A. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39, 20–31. https://doi.org/10.1007/s002440010075
  • 36. Martínez-López S., Martínez-Sánchez M.J., PérezSirvent C. 2021. Do Old Mining Areas Represent an Environmental Problem and Health Risk? A Critical Discussion through a Particular Case. Minerals, 11, 594. https://doi.org/10.3390/min11060594
  • 37. Maslov A.V., Shevchenko V.P. 2019. REE–Th systematics of the suspended particulate matter and bottom sediments from the mouth zones of the world rivers of different categories/classes and some large Russian arctic rivers. Geokhimiya, 64(1), 59–78. https://doi.org/10.31857/S0016-752564159-78
  • 38. Menshikova E., Osovetsky B., Blinov S., Belkin P. 2020. Mineral Formation under the Influence of Mine Waters (The Kizel Coal Basin, Russia). Minerals, 10(4), 364. https://doi.org/10.3390/min10040364
  • 39. Mohammad Ali B.N., Lin C.Y., Cleophas F., Abdullah M.H., Musta B. 2015. Assessment of heavy metals contamination in Mamut river sediments using sediment quality guidelines and geochemical indices. Environ Monit Assess, 187(1), 4190. https://doi.org/10.1007/s10661-014-4190-y
  • 40. Muneera J., Al Obaidb A., Ullaha R., Rehman K.U., Erinled K.O. 2022. Appraisal of toxic metals in water, bottom sediments and fish of freshwater lake. Journal of King Saud University – Science, 34(1), 101685. https://doi.org/10.1016/j.jksus.2021.101685
  • 41. Müller G. 1969. Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2(3), 108–118.
  • 42. Nieto J.M., Sarmiento A.M., Olías M., Canovas C.R., Riba I., Kalman J., Delvalls T.A. 2007. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environment international, 33(4), 445–455. https://doi.org/10.1016/j.envint.2006.11.010
  • 43. Nkansah M.A., Darko G., Dodd M., Opoku F., Essuman T.B., Antwi-Boasiako J. 2017. Assessment of pollution levels, potential ecological risk and human health risk of heavy metals/metalloids in dust around fuel filling stations from the Kumasi Metropolis, Ghana. Cogent Environmental Science, 3(1), 1412153. DOI: 10.1080/23311843.2017.1412153
  • 44. Opekunov A.Yu., Janson S.Yu., Opekunova M.G., Kukushkin S.Yu. 2021. Mineral phases of metals in industrial sediments of St. Petersburg rivers with extreme pollution. Vestnik of Saint Petersburg University. Earth Sciences, 66(2). 267–288. https://doi.org/10.21638/spbu07.2021.205 (in Russian)
  • 45. Opekunov A.Yu., Mitrofanova E.S., Spassky V.V., Opekunova M.G, Sheinerman N.A, Chernyshova A.V. 2020. Chemical composition and toxicity of bottom sediments of small streams of St. Petersburg. Water Resources, 47(2), 196–207. https://doi.org/10.31857/S032105962002011X.
  • 46. Persoone G., Marsalek B., Blinova I., Törökne A., Zarina D., Manusadzianas L., Nalecz-Jawecki G., Tofan L., Stepanova N., Tothova L., Kolar B. 2003. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental toxicology, 18(6), 395–402. https://doi.org/10.1002/tox.10141
  • 47. Pyankov S.V., Maximovich N.G., Khayrulina E.A. Berezina O.A., Shikhov A.N., Abdullin R.K. 2021. Monitoring Acid Mine Drainage’s Effects on Surface Water in the Kizel Coal Basin with Sentinel-2 Satellite Images. Mine Water Environ, 40, 606–621. https://doi.org/10.1007/s10230-021-00761-7
  • 48. Ren J., Liu Y., Wang F., He G., Deng X., Wei Z., Yao H. 2021. Mechanism and Influencing Factors of REY Enrichment in Deep-Sea Sediments. Minerals, 11, 196. https://doi.org/10.3390/min11020196
  • 49. Report “On the state and environmental protection of the Perm Territory in 2020”, available at: http://www.permecology.ru
  • 50. Rudnick R.L., Gao S. 2003. Composition of the Continental Crust. Treatise on Geochemistry,3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4
  • 51. Sakan S.M., Djordjevic D.S., Manojlovic D.D., Polic P.S. 2009. Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manage, 90, 3382–3390. https://doi.org/10.1016/j.jenvman.2009.05.013
  • 52. Skorbiłowicz M., Skorbiłowicz E., Górska M. 2018. The Content of Heavy Metals in Bottom Sediments of Selected Rivers of the Podlasie Province as an Impact Assessment of the Towns they are Adjacent with. J. Ecol. Eng., 19(4), 197–206. https://doi.org/10.12911/22998993/89650
  • 53. Sojka M., Jaskuła J., Siepak M. 2019. Heavy Metals in Bottom Sediments of Reservoirs in the Lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk. Water, 11(1), 56. https://doi.org/10.3390/w11010056
  • 54. Soltani N., Moore F., Keshavarzi B., Sharifi R. 2014. Geochemistry of trace metals and rare earth elements in stream water, stream sediments and acid mine drainage from Darrehzar Copper Mine, Kerman, Iran. Water Qual. Expo. Health, 6, 97–114. https://doi.org/10.1007/s12403-014-0114-x
  • 55. Szara M., Baran A., Klimkowicz-Pawlas A., Tarnawski M. 2020. Ecotoxicological characteristics and ecological risk assessment of trace elements in the bottom sediments of the Rożnów reservoir (Poland). Ecotoxicology (London, England), 29(1), 45–57. https://doi.org/10.1007/s10646-019-02137-8
  • 56. Terra N.R., Feiden I.R., Lucheta F., Gonçalves S.P., Gularte J.S. 2010. Bioassay using Daphnia magna Straus, 1820 to evaluate the sediment of Caí River (Rio Grande do Sul, Brazil). Acta Limnologica Brasiliensia, 22(4), 442–454. https://doi.org/10.4322/actalb.2011.008
  • 57. Thisani S.K., Kallon D.V.V., Byrne P. 2020. Geochemical Classification of Global Mine Water Drainage. Sustainability, 12, 10244. https://doi.org/10.3390/su122410244
  • 58. Torre B.M., Borrero-Santiago A.R., Fabbri E., Guerra R. 2019. Trace metal levels and toxicity in the Huelva Estuary (Spain): A case study with comparisons to historical levels from the past decades. Environmental Chemistry and Ecotoxicology, 1, 12–18. https://doi.org/10.1016/j.enceco.2019.07.002
  • 59. Wang Z., Xu Y., Zhang Z., Zhang Y. 2021. Review: Acid Mine Drainage (AMD) in Abandoned Coal Mines of Shanxi, China. Water, 13, 8. https://dx.doi.org/10.3390/w13010008
  • 60. Worakhunpiset S. 2018. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand. Int J Environ Res Public Health, 15(4), 810. https://doi.org/10.3390/ijerph15040810
  • 61. Wright I.A., Paciuszkiewicz K., Belmer N. 2018. Increased water pollution after closure of Australia’s longest operating underground coal mine: a 13-month study of mine drainage, water chemistry and river ecology. Water, Air And Soil Pollution, 229, 55. https://doi.org/10.1007/s11270-018-3718-0
  • 62. Yi L., Gao B., Liu H., Zhang Y., Du C., Li Y. 2020. Characteristics and Assessment of Toxic Metal Contamination in Surface Water and Sediments Near a Uranium Mining Area. International Journal of Environmental Research and Public Health, 17(2), 548. https://doi.org/10.3390/ijerph17020548
  • 63. Younger P.L. 2001. Mine water pollution in Scotland: nature, extent and preventative strategies. Science of The Total Environment, 265(1–3), 309–326. https://doi.org/10.1016/S0048-9697(00)00673-2
  • 64. Zhang C., Yu Z.G., Zeng G.M., Jiang M., Yang Z.Z., Cui F., Zhu M.Y., Shen L.Q., Hu L. 2014. Effects of sediment geochemical properties on heavy metal bioavailability. Environment international, 73, 270–281. https://doi.org/10.1016/j.envint.2014.08.010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5a97c7d-c8a1-4646-9944-0887cd49f0fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.