Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We establish connections between several properties of topological dynamical systems, such as: – every point is generic for an ergodic measure, – the map sending points to the measures they generate is continuous, – the system splits into uniquely (alternatively, strictly) ergodic subsystems, – the map sending ergodic measures to their topological supports is continuous, – the Cesàro means of every continuous function converge uniformly.
Wydawca
Rocznik
Tom
Strony
117--132
Opis fizyczny
Bibliogr. 6 poz., rys.
Twórcy
autor
- Faculty of Pure and Applied Mathematics, Wrocław University of Technology, Wrocław, Poland
autor
- Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
Bibliografia
- [H] G. Hansel, Strict uniformity in ergodic theory, Math. Z. 135 (1974), 221-248.
- [HY] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, London, 1961.
- [J] R. I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1970), 717-729.
- [KW] Y. Katznelson and B. Weiss, When all points are recurrent/generic, in: A. Katok (ed.), Ergodic Theory and Dynamical Systems I, Progr. Math. 10, Birkhäuser, Boston, MA, 1981, 195-210.
- [K] W. Krieger, On unique ergodicity, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. II, Univ. of California Press, 1972, 327-345.
- [O] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5a78c62-d994-4f67-97b4-25a8c0bbf0b0