PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selective catalytic reduction of NOX with ammonia NH3-SCR over transition metal-based catalysts -influence of the catalysts support

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural layered clays (bentonite and vermiculite) and natural zeolite (clinoptilolite) were tested and compared as the supports of the catalysts forselective catalytic reduction withammonia (NH3-SCR). The raw materials were modified in order to improve their catalytic properties. Layered clays were treated with HNO3 and intercalated with Al2O3 pillars to enhance their acidity, porosity and specific surface area. Clinoptilolite was ion-exchanged with NH4NO3 in order to increase the content of Brönsted acid sites, indispensablefor NH3 adsorptionduring the reaction. Subsequently, iron as an active phase was deposited on the modified supports by various methods, including incipient wetness impregnation, ion-exchange and co-precipitation. The efficiency of these methods was compared as NOx conversionobtained for each material. XRD analysis indicated that the initial modifications affected the structure of the raw aluminosilicates. FT-IR measurement confirmed the presence of characteristic Si-O and Al-O bonds and H2O molecules that occurnaturally in the materials. UV-Vis spectroscopy results indicated that different types of Fe species were deposited on the catalysts surface and theirform strongly depends on the type of the support. NH3-SCR catalytic tests showedthat all of the analyzed materials exhibitsatisfactory level of NO conversion and negligible concentration of by-product (N2O) in the exhaust gas. The highest catalytic activity (ca. 50% at 170°C and over 95% above 250°C) was obtained for Fe-Bent. The lowest concentration of N2O in the flue gas (less than 5 ppm in the whole temperature range) was observed for Fe-Clin.
Słowa kluczowe
Rocznik
Strony
1429--1441
Opis fizyczny
Bibliogr.62 poz.., tab, wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • ANDREOLI,S., DEORSOLA, F., A., GALLETTI, C., PIRONE, R. 2015. Nanostructured MnOxcatalysts for low-temperature NOx SCR. Chem. Eng. J. 278, 174-182.
  • BARBOOTI, M. M., IBRAHEEM, N. K., ANKOSH, A. H., 2011. Removal of nitrogen dioxide and sulfur dioxide from air streams by absorption in urea solution. J. Environ. Protect. 2, 175-185.
  • BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2018. Production of new activated bio-carbons by chemical activation of residue left after supercritical extraction of hops. Environ. Res. 161, 456-463.
  • CHEN, L., LI, J., GE, M., 2011. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2catalysts on selective catalytic reduction of NOxby NH3. Chem. Eng. J., 170 (2-3), 531-537.
  • CHMIELARZ, L., ZBROJA, M., KUŚTROWSKI, P., DUDEK, B., RAFALSKA-ŁASOCHA, A., DZIEMBAJ, R., 2004. Pillared montmorillonites modified with silver. Temperature programmed desorption studies. J. Therm. Anal. Calorim. 77, 115-123.
  • CHMIELARZ, L., KOWALCZYK, A., MICHALIK, M., DUDEK, B., PIWOWARSKA, Z., MATUSIEWICZ, A., 2010. Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Appl. Clay Sci. 49, 156-162.
  • CHMIELARZ, L., KUŚTROWSKI, P., MICHALIK, M., DUDEK, B., PIWOWARSKA, Z., DZIEMBAJ, R., 2008. Vermiculites intercalated with Al2O3and modified with transition metals as catalysts of DeNOxprocess. Catal. Today 137, 242-246.
  • CHMIELARZ, L., KUŚTROWSKI, P., PIWOWARSKA, Z., MICHALIK, M., DUDEK, B., DZIEMBAJ, R., 2009. Natural micas intercalated with Al2O3 and modified with transition metals as catalysts of the selective oxidation of ammonia to nitrogen. Top. Catal. 52, 1017-1022.
  • CHMIELARZ, L., KUŚTROWSKI, P., ZBROJA, M. RAFALSKA-ŁASOCHA, A., DUDEK, B., DZIEMBAJ, R., 2003. SCR of NO by NH3 on alumina or titania-pillared montmorillonite various modified with Cu or Co: Part I. General characterization and catalysts screening. Appl. Catal. B. 45, 103-116.
  • CHMIELARZ, L., PIWOWARSKA, Z., KUŚTROWSKI, P., WĘGRZYN, A., GIL, B., KOWALCZYK, A., DUDEK, B., DZIEMBAJ, R., MICHALIK, M., 2011. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process. Appl. Clay Sci. 53, 164-173.
  • CHMIELARZ, L., WOJCIECHOWSKA, M., RUTKOWSKA, M., ADAMSKI, A., WĘGRZYN, A., KOWALCZYK, A., DUDEK, B., BOROŃ, P., MICHALIK, M., MATUSIEWICZ, A., 2012. Acid-activated vermiculites as catalysts of the DeNOx process. Catal. Today 191, 25-31.
  • DAKDAREH, A.M., FALAMAKI, C., GHASEMIAN, N., 2018. Hydrothermally grown nano-manganese oxide on clinoptilolite for low-temperature propane-selective catalytic reductionof NOx. J. Nanopart. Res. 20, 309.
  • DELIYANNI, E. A., KYZAS, G. Z., MATIS, K. A., 2017. Various flotation techniques for metal ions removal. J. Mol. Liq. 225, 260-264.
  • DENG, S., ZHUANG, K., XU, B., DING, Y., YU, L., FAN, Y., 2016. Promotional effect of iron oxide on the catalytic properties of Fe-MnOx/TiO2 (anatase) catalysts for the SCR reaction at low temperatures. Catal. Sci. Technol. 6, 1772-1778.
  • DOULA, M. K., 2007. Synthesis of a clinoptylolite-Fe system with Cu sorption capacity. Chemosphere 67, 731-740.
  • DOULA, M., IOANNOU, A., 2003. The effect of electrolyte anion on Cu adsorption-desorption by Clinoptilolite. Micropor. Mesopor. Mater. 58, 115-130.
  • ENGLER, B. H., 1991. Katalysatoren fűr den Umweltschutz. Chem. Ing. Tech. 63 (4), 298.
  • FENG, Q., WEN, S., BAI, X., CHANG, W., CUI, C., ZHAO, W., 2019. Surface modification of smithsonite with ammonia to enhance the formation of sulfidization products and its response to flotation. Miner. Eng. 137, 1-9.
  • GAO,F., WASHTON, N. M., WANG, Y., KOLLÁR, M., SZANYI, J., PEDEN, C. H. F., 2015. Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: Implications for the active Cu species and the roles of Brønsted acidity. J. Catal. 331, 25-38.
  • GAO, F., ZHENG, Y., KUKKADAPU, R. K., WANG, Y., WALTER, E.D., SCHWENZER, B., SZANYI, J., PEDEN, C. H.F., 2016. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: Nature of the Fe ions and structure-function relationships. ACS Catal. 6,2939-2954.
  • GELVES, J.-F., DORKIS, L., MÁRQUEZ, M.-A., ÁLVAREZ, A.-C., GONZÁLEZ, L.-M., VILLA, A.-L., 2019. Activity of an iron Colombian natural zeolite as potential geo-catalyst for NH3-SCR of NOx. Cat. Today, 320, 112-122.
  • GRZYBEK, T., 2007. Layered clays as SCR deNOx catalysts. Catal. Today 119, 125-132.
  • GUAN, B., ZHAN, R., LIN, H., HUANG, Z., 2014. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 66, 395-414.
  • HAYATI-ASHTIANI, M., 2012. Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites). Particul. Sci. Technol. 30, 553-564.
  • HIRANO, T., 1986. Active phase in potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene. Appl. Catal. 26, 81-90.
  • HUFF, W. D., 2016. K-bentonites: A review. American Mineral.101, 43-70.
  • HUO, X., WU, L., LIAO, L. XIA, Z., WANG, L., 2012. The effect of interlayer cations on the expansion of vermiculite. Powder Technol. 224, 241-246.
  • JABŁOŃSKA,M., PALKOVITS, R., 2016. Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides. Catal. Sci. Technol. 6, 49-72.
  • KOWALCZYK, A., ŚWIĘS, A., GIL, B., RUTKOWSKA, M., PIWOWARSKA Z., BORCUCH, A., MICHALIK, M., CHMIELARZ, L., 2018. Effective catalysts for the low-temperature NH3-SCR process based on MCM-41 modified with copper by template ion-exchange (TIE) method. Appl. Catal. B. 237, 927-937.
  • KWON, D. W., PARK, K. H., HONG, S. C., 2016. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chem. Eng. J. 284, 315-324.
  • LIU, Z. G., OTTINGER, N. A., CREMEENS, C. M., 2015. Vanadium and tungsten release from V-based selective catalytic reduction diesel aftertreatment. Atmos. Environ. 104, 154-161.
  • MADIA,G., KOEBEL, M., ELSENER, M., WOKAUN, A., 2002. Side reactions in the selective catalytic reduction of NOx with various NO2 fractions. Ind. Eng. Chem. Res. 41, 4008-4015.
  • MARTIN, N., VENNESTRØM, P.N.R., THØGERSEN, J. R., MOLINER, M., CORMA, A., 2017. Iron-containing SSZ-39 (AEI) zeolite: An active and stable high-temperature NH3-SCR catalyst. Chem. Cat. Chem. 9, 1754-1757.
  • MOTAK, M., 2008. Montmorillonites modified with polymer and promoted with copper as DeNOx catalysts. Catal. Today 137, 247-252.
  • NEZAMZADEH-EJHIEH, A., AMIRI, M., 2013. CuO supported clinoptilolite towards solar photocatalytic degradation of p-aminophenol. Powder Technol. 235, 279-288.
  • NIU,C., SHI, X., LIU, F., LIU, K., XIE, L., YOU, Y., HE, H., 2016. High hydrothermal stability ofCu-SAPO-34 catalysts for the NH3-SCR of NOx. Chem. Eng. J., 294, 254-263.
  • PAOLUCCI, C., DI IORIO, J.R., RIBEIRO, F.H., GOUNDER, R., SCHNEIDER, W.F., 2016. Catalysis science of NOxselective catalytic reduction with ammonia over Cu-SSZ-13 and Cu-SAPO-34. Adv.Catal. 59, 1-107.
  • RAHKAMAA-TOLONEN, K., MAUNULA, T.,LOMMA, M.,HUUHTANEN, M., KEISKI, R. L., 2005. The effect of NO2 on the activity of fresh and aged zeolite catalysis in the NH3-SCR reaction. Catal. Today 100, 217-222.
  • REY-PEREZ-CABALLERO, F.J., PONCELET, G., 2000. Al-pillared vermiculites: Microporous 18A preparation and characterization. Micropor. Mesopor. Mater. 37, 313-327.
  • RUTKOWSKA, M., PACIA, I., BASĄG, S., KOWALCZYK, A., PIWOWARSKA, Z., DUDA, M., TARACH, K.A., GÓRA-MAREK, K., MICHALIK, M., DIAZ, U., CHMIELARZ, L., 2017. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO process. Micropor.Mesopor.Mater. 246, 193-206.
  • RYU, T., KANG, Y., NAM, I.-S., Hong, S.-B., 2019. Iron-exchanged high-silica LTA zeolites as hydrothermally stable NH3-SCR catalysts. React. Chem. Eng. 4, 1050-1058.
  • SAAD, M., BIAŁAS, A., CZOSNEK, C., MOTAK, M., 2019. Tlenkowe katalizatory cerowo-miedziowe naniesione na węgiel do niskotemperaturowego usuwania NOx ze stacjonarnych źródeł emisji. Przem. Chem. 98(4), 546-550.
  • SAMOJEDEN,B., GRZYBEK,T., 2016. The influence of the promotion of N-modified activated carbon with iron on NO removal by NH3-SCR (Selective catalytic reduction). Energy 116, 1484-1491.
  • SAMOJEDEN, B., DRUŻKOWSKA, J., DURACZYŃSKA, D., PODDĘBNIAK, M., MOTAK, M., 2019a. Use of iron and copper-promoted cenospheres as catalysts in the selective catalytic reduction of nitrogen(II) oxide with ammonia. Przem. Chem., 98(4), 541-545.
  • SAMOJEDEN, B., GRZYBEK, T., SZYMASZEK, A., LIGĘZA, O., KOWALCZYK, W., MOTAK, M., 2019b. The application of modified cenospheres in DeNOx process. E3S Web of Conferences 108 (02019), 1-8
  • SANTOS, S.S.G., SILVA, H.R.M., DE SOUZA, A.G., ALVES, A.P.M., DA SILVA FILHO, E.C., FONESECA, M. G., 2015. Acid-leached mixed vermiculites obtained by treatment with nitric acid. Appl. Clay Sci. 104, 286-294.
  • SHEN, B., MA, H., HE, C., ZHANG, X., 2014. Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts. Fuel Process. Technol. 119, 121-129.
  • ŚLIWIŃSKA-DĄBROWSKA, R., SCHMIDT, R., SIKORA, A., 2011. Właściwości fizykochemiczne zeolitu modyfikowanego jonami żelaza. Inżynier. Ekol. 24, 195-204.
  • STAWIŃSKI,W., WĘGRZYN, A., DAŃKO, T., FREITAS, O., FIGUEIREDO,S., CHMIELARZ, L., 2017. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere, 173, 107-115.
  • STRIVASTAVA, R.K., NEUFFER, W., GRANO, D., KHAN, S., STAUDT, J. E., JOZEWICZ, W., 2005. Controlling NOx emission from industrial sources. Environ. Prog. 24(2), 181-197.
  • WANG, A., WANG, Y., WALTER, E. D., WASHTON, N. M., GUO, Y., LU, G., PEDEN, C.H.F., GAO, F., 2019. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects. Catal. Today 320, 91-99.
  • WANG, L., WEI, L., SCHMIEG, S. J., WENG, D., 2015. Role of Bønsted acidity in NH3 selective catalytic reduction reaction on Cu/SAPO-34 catalysts. J. Catal. 324, 98-106. WECKHUYSEN, B.M., YU, J., 2015. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 44, 7022-7024.
  • WECKHUYSEN, B.M., YU, J., 2015. Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 44, 7022-7024.
  • WIERZBICKI, D., DĘBEK, R., SZCZUROWSKI, J., BASĄG, S., WŁODARCZYK, W., MOTAK, M., BARAN, R., 2015. Copper, cobalt and manganese: Modified hydrotalcite materials as catalystsfor the selective catalytic reduction of NO with ammonia. The influence of manganese concentration. C. R. Chim. 18, 1074-1083.
  • WU, W., CHENG, L.C., SHEN, L.S., ZHANG, K., MENG, H., GUO, K., CHEN, J.F., 2009. Effects of silica sources on the properties of magnetic hollow silica. Colloid. Surf. A, 334, 131-136.
  • YANG, S., FU, Y., LIAO, Y., XIONG, S., QU, Z., YAN, N., LI, J., 2014. Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity. Catal. Sci. Technol. 4(1), 224-232.
  • YIN, W., HAN, Y., XIE, F., 2010. Two-step flotation recovery of iron concentrate from Donganshan carbonaceous iron ore. J. Cent. South Univ. Technol. 17, 750-754.
  • YUAN, M., DENG, W., DONG, S., LI, Q., ZHAO, B., SU, Y., 2018. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene. Chem. Eng. J. 353, 839-848.
  • ZHANG, S.-H., CAI, L.-L., MI, X.-H., JIANG, J.-L., LI, W., 2008. NOx Removal from simulated flue gas by chemical absorption -biological reduction integrated approach in biofilter. Environ. Sci. Technol. 42(10), 3814-3820.
  • ZHAO, W., LIU, D., FENG, Q., WEN, S., CHANG, W., 2019. DFT insights into the electronic properties and adsorption mechanism of HS-on smithsonite (101) surface. Miner. Eng. 141, 105846.
  • ZHIRONG, L., AZHAR UDDIN, M. D., ZHANXUE, S., 2011. FT-IR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim. Acta A, 79, 1013-1016.
  • ZIEMIAŃSKI, P., KAŁAHURSKA, K., SAMOJEDEN, B., 2015. Selective catalytic reduction of NO with NH3 on mixed alumina-iron (III) oxide pillared montmorillonite”Cheto” Arizona, modified with hexamminecobalt (III) chloride. Adsorpt. Sci. Technol. 35, 825-833.
Uwagi
1. The research was financed by AGH Grant 16.16.210.476
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5a14e14-4c7e-4e7f-bdc0-1c0c2125c503
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.