Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Teleoperation robotic systems control, which enables humans to perform activities in remote situations, has become an extremely challenging field in recent decades. In this paper, a Model Free Proportional‐Derivative Slid‐ ing Mode Controller (MFPDSMC) is devoted to the syn‐ chronization problem of teleoperation systems subject to actuator dynamics, time‐varying delay, model uncer‐ tainty, and input interaction forces. For the first time, the teleoperation model used in this study combines actuator dynamics and manipulator models into a single equation, which improves model accuracy and brings it closer to the actual system than in prior studies. Further, the proposed control approach, called Free, involves the simple mea‐ surement of inputs and outputs to enhance the system’s performance without relying on any knowledge from the mathematical model. In addition, our strategy includes a Sliding Mode term with the MFPD term to increase system stability and attain excellent performance against external disturbances. Finally, using the Lyapunov func‐ tion under specified conditions, asymptotic stability is established, and simulation results are compared and provided to demonstrate the efficacy of the proposed strategy.
Rocznik
Tom
Strony
69--77
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Laboratory of Automation and Systems Analysis, (LAAS), National Polytechnic School of Oran Algeria
autor
- Institute of Industrial Security Maintenance of Oran, Algeria
autor
- Laboratory of Automation and Systems Analysis, (LAAS), National Polytechnic School of Oran Algeria
Bibliografia
- [1] K. A. Manocha, N. Pernalete, R. V. Dubey. “Variable position mapping‐based assistance in teleoperation for nuclear clean up”, In: Proceedings of the 2001 ICRA IEEE International Conference on Robotics and Automation, pp. 374–379, (2001). doi: 10.1109/ROBOT.2001.932580.
- [2] L. F. Penin, K. Matsumoto, and S. Wakabayashi. “Force reflection for time‐delayed teleoperation of space robots”, In: Proceedings of ICRA’00 IEEE International Conference on Robotics and Automation, pp. 3120–3125, (2000). doi: 10.1109/ROBOT.2000.845143
- [3] R. J. Anderson, M. W. Spong. “Bilateral control of teleoperators with time delay”. Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics, Beijing, China, pp. 131–138, (1988). doi: 10.1109/ICSMC. 1988.754257.
- [4] P. F. Hokayem, M. W. Spong. “Bilateral teleoperation: an historical survey”. Automatica, 42(12), 2035‐2057, (2006). doi: 10.1016/j.automatica. 2006.06.027.
- [5] I. G. Polushin, P. X. Liu, and C. H. Lung. “A force‐reflection algorithm for improved transparency in bilateral teleoperation with communication delay”, IEEE/ASME Trans. Mechatronics 12: 3, pp. 361–374, Jun. 2007.
- [6] G. Yang, H. Lv, Z. Zhang et al. “Keep healthcare workers safe: Application of teleoperated robot in isolation ward for COVID‐19 prevention and control”. Chin. J. Mech. Eng: 33, 47, (2020). doi: 10.1186/s10033‐020‐00464‐0.
- [7] T. Abut and S. Soyguder. “Real‐time control of bilateral teleoperation system with adaptive computed torque method”, Industrial Robot 44: 3, pp. 299–311, (2017). doi: 10.1108/IR‐09‐2016‐0245.
- [8] X. Liu and M. Tavakoli. “Inverse dynamics‐based adaptive control of nonlinear bilateralteleoperation systems” 2011 IEEE International Conference on Robotics and Automation, Shang‐hai International Conference Center, Shanghai,China, (2011).
- [9] K. Hosseini‐Suny et al. “Model reference adaptive control design for a teleoperation system with output prediction”, Journal of Intelligent & Robotic Systems, 59, 319–339, (2010).
- [10] Z. Chen, Y. Pan, J. Gu. “A novel adaptive robust control architecture for bilateral teleoperation systems under time‐varying delays”, International Journal of Robust and Nonlinear Control, 25: 17, pp. 3349–3366, (2015).
- [11] Z. Wang, Y. Sun, B. Lianga. “Synchronization control for bilateral teleoperation system with position error constraints: A fixed‐time approach”, ISA Transactions 93, pp. 125–136, (2019).
- [12] M. Tong, Y. Pan, Z. Li, and W. Lin. “Valid data based normalized crosscorrelation (VDNCC) for topography identification”, Neurocomputing, 308, pp. 184–193, (2018).
- [13] X. Yang, C.‐C. Hua, J. Yan, and X.‐P. Guan. “A new master‐slave torque design for teleoperation system by T‐S fuzzy approach”, IEEE Transactions on Control Systems Technology, 23(4),1611–1619, (2014).
- [14] Y.‐C. Liu and M.‐H. Khong. “Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics”, IEEE/ASME Transactions on Mechatronics 20: 5, pp. 2550–2562, (2015).
- [15] Z. Chen, F. Huang, C. Yang and B. Yao. “Adaptive fuzzy backstepping control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance”, IEEE Transactions on Industrial Electronics 67: 1, pp. 746–756, (2020), doi: 10.1109/TIE.2019.2898587.
- [16] H. Wang, P. X. Liu and S. Liu. “Adaptive neural synchronization control for bilateral teleoperation systems with time delay and backlash‐like hysteresis”, IEEE Transactions onCybernetics 47: 10, pp. 3018‐3026, (2017), doi: 10.1109/TCYB.2016.2644656.
- [17] S. Hao, L. Hu and P. X. Liu. “Sliding mode control for a surgical teleoperation system via a disturbance observer”, IEEE Access, 7, pp. 43383–43393, (2019), doi: 10.1109/ACCESS.2019.290 1899.
- [18] Y. Yang, C. Hua, J. Li, X. Guan. “Finite‐time output‐feedback synchronization control for bilateral teleoperation system via neural networks”, Information Sciences. 406–407. 216‐233, (2017). doi: 10.1016/j.ins.2017.04.034.
- [19] M. Fliess, C. Join, M. Mboup, H. Sira‐Ramirez. “Vers une commande multivariable sans modele”, arXiv preprint math/0603155, (2006).
- [20] H. Wang, X. Ye, Y. Tian, N. Christov. “Attitude control of a quadrotor using model free based sliding model controller”, In: Proc. 2015 20th International Conference on Control Systems and Science, Bucharest, Romania, pp. 149–154, (2015).
- [21] C. Y. Yu, J. L. Wu. “Intelligent PID control for two‐wheeled inverted pendulums”, IEEE International Conference on System Science and Engineering, pp. 1–4, (2016).
- [22] A. N. Chand, M. Kawanishi and T. Narikiyo. “Nonlinear model‐free control of flapping wing flying robot using iPID”, IEEE International Conference on Robotics and Automation, pp. 16–21, (2016).
- [23] X. Wang, X. Li, J. Wang, X. Fang, X. Zhu. “Data‐driven model‐free adaptive sliding mode control for the multi degree‐of‐freedom robotic exoskeleton”, Information Sciences. 327, 246–257, (2016).
- [24] F. Lafont, J. Balmat, N. Passel, M. Fliess. “A model‐free control strategy for an experimental green house with an application to fault accommodation”, Computers and Electronics in Agriculture, 110, 139–149, (2015).
- [25] T. M. Ridha and C. H. Moog. “Model free control of type‐1 diabetes: A fasting‐phase study”, IFAC‐PapersOnLine. 48:20, pp. 76–81, (2015).
- [26] F. J. Carrillo, F. Rotella. “Some contributions to estimation for mode‐free control”, Proceedings of the 17th IFAC Symposium on System Identification, Beijing, China, pp. 19–21, (2015).
- [27] B. Andrea‐Novel, L. Menhour, M. Fliess, H. Mounier. “Some remarks on wheeled autonomous vehicles and the evolution of their control design”, IFAC‐PapersOnLine, 49(15), 199–204. (2016).
- [28] R. C. Roman, M. B. Radac, R. E. Precup, E. M. Petriu. “Data‐driven optimal model‐free control of twin rotor aerodynamic systems”, IEEE International Conference on Industrial Technology (ICIT) (pp. 161–166), Seville, Spain, (2015).
- [29] N. Adhikary, C. Mahanta. “Sliding mode control of position commanded robot manipulators”. Control Engineering Practice, 81, 183–198, (2018).
- [30] T. Kara, A. H. Mary. “Adaptive PD‐SMC for nonlinear robotic manipulator tracking control”, Studies in Informatics and Control, 26(1), 49–58, (2017). doi: 10.24846/v26i1y201706.
- [31] C. Hua, P. X. Liu, H. Wang. “Convergence analysis of teleoperation systems with unsymmetric time‐varying delays”, IEEE International Workshop on Haptic Audio Visual Environments and Games (pp. 65–69), (2008).
- [32] C. C. Hua, X. P. Liu. “Delay‐dependent stability criteria of teleoperation systems with asymmetric time‐varying delays”, IEEE Transactions on Robotics, 26(5), 925–932, (2010).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5a0ec6d-7ac1-43fe-b106-1f0a328c7f22