PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research Studio for Testing Control Algorithms of Mobile Robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, a significant development of technologies related to the control and communication of mobile robots, including Unmanned Aerial Vehicles, has been noticeable. Developing these technologies requires having the necessary hardware and software to enable prototyping and simulation of control algorithms in laboratory conditions. The article presents the Laboratory of Intelligent Mobile Robots equipped with the latest solutions. The laboratory equipment consists of four quadcopter drones (QDrone) and two wheeled robots (QBot), equipped with rich sensor sets, a ground control station with Matlab-Simulink software, OptiTRACK object tracking system, and the necessary infrastructure for communication and security. The paper presents the results of measurements from sensors of robots monitoring various quantities during work. The measurements concerned, among others, the quantities of robots registered by IMU sensors of the tested robots (i.e., accelerometers, magnetometers, gyroscopes and others).
Słowa kluczowe
Rocznik
Strony
759--768
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
  • Czestochowa University of Technology, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Czestochowa, Poland
autor
  • Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] M. Trojnacki, P. Szynkarczyk, A. Andrzejuk, ”Tendencje rozwoju mobilnych robotów lądowych”, Pomiary Automatyka Robotyka 6, 11–14 (2008).
  • [2] T. Machado, T. Malheiro, S. Monteiro, W. Erlhagen, E. Bicho, ”Attractor dynamics approach to joint transportation by autonomous robots: theory, implementation and validation on the factory floor”, Autonomous Robots 43, 589–610 (2019), doi:10.1007/s10514-018-9729-2.
  • [3] H. Yamaguchi, A. Nishijima, A. Kawakami, ”Control of two manipulation points of a cooperative transportation system with two car-like vehicles following parametric curve paths”, Robotics and Autonomous Systems 63, 165178 (2015), doi:10.1016/j.robot.2014.07.007.
  • [4] L. Paya, A. Gil, O. Reinoso, ”A State-of-the-Art Review on Mapping and Localization of Mobile Robots Using Omnidirectional Vision Sensors”, Journal of Sensors, vol 2017, 1-20 (2017), doi:10.1155/2017/3497650.
  • [5] O. Wijk, H. Christensen, ”Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data”, Robotics and Autonomous Systems, 31(1-2), 3142(2000), doi:10.1016/S0921-8890(99)00085-8.
  • [6] A. Y. Hata, D. F. Wolf, ”Outdoor mapping using mobile robots and laser range finders”, in Proc. of the Electronics Robotics and Automotive Mechanics Conference, Cuernavaca, 2009, pp. 209214, doi: 10.1109/CERMA.2009.12.
  • [7] B. Madhevan, M. Sreekumar, ”Identification of probabilistic approaches and map-based navigation in motion planning for mobile robots”, S?dhan?, 43, 1-18(2018), doi: 10.1007/s12046-017-0776-8.
  • [8] G.C.R. De Oliveira, K.B. de Carvalho, A.S. Brand?o, ”A Hybrid Path-Planning Strategy for Mobile Robots with Limited Sensor Capabilities”, Sensors 19(5), 1049, 2019, doi:10.3390/s19051049.
  • [9] J. Bae, W. Chung, ”Heuristics for Two Depot Heterogeneous Unmanned Vehicle Path Planning to Minimize Maximum Travel Cost”, Sensors 19(11), 2461, 2019, doi:10.3390/s19112461.
  • [10] A. S. Brand?o, M. Sarcinelli-Filho, R. Carelli, ”An Analytical Approach to Avoid Obstacles in Mobile Robot Navigation”, International Journal of Advanced Robotic Systems, 10, 278, 2013, doi: 10.5772/56613.
  • [11] Z. Liu, W. Chen, J. Lu, H. Wang, J. Wang, ”Formation Control of Mobile Robots Using Distributed Controller With Sampled-Data and Communication Delays,” in IEEE Transactions on Control Systems Technology, vol. 24, no. 6, pp. 2125-2132, Nov. 2016, doi: 10.1109/TCST.2016.2518618.
  • [12] T. T. Ribeiro, R. O. Fernandez, A. G. S. Conceiç¸?o, ”NMPC-based Visual Leader-Follower Formation Control for Wheeled Mobile Robots”, IEEE 16th International Conference on Industrial Informatics (INDIN), Porto, 2018, pp. 406-411, doi: 10.1109/INDIN.2018.8472107.
  • [13] W. Li, L. Ding, H. Gao, M. Tavakoli, ”Haptic Tele-Driving of Wheeled Mobile Robots Under Nonideal Wheel Rolling, Kinematic Control and Communication Time Delay”, in IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 336-347, Jan. 2020, doi: 10.1109/TSMC.2017.2738670.
  • [14] S. Rahmanpour, R. M. Esfanjani, ”Energy-aware planning of motion and communication strategies for networked mobile robots”, Information Sciences, 497, 149-164 (2019), doi: 10.1016/j.ins.2019.05.034.
  • [15] J. Fink, A. Ribeiro , V. Kumar, ”Motion planning for robust wireless networking”, in: 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, Minnesota, USA, 2012, pp. 24192426, doi: 10.1109/ICRA.2012.6224725.
  • [16] Y. Kantaros, M.M. Zavlanos, ”Distributed communication-aware coverage control by mobile sensor networks”, Automatica 63, 209220 (2016), doi: 10.1016/j.automatica.2015.10.035.
  • [17] F. Ribeiro, G. Lopes, T. Maia, H. Ribeiro, P. Osorio, R. Roriz, N. Ferreira, ”Motion Control of Mobile Autonomous Robots Using Nonlinear Dynamical Systems Approach”, in CONTROLO 2016 Proceedings of the 12th Portuguese Conference on Automatic Control, Springer International Publishing, 409–421, 2017, doi: 10.1007/978-3-319-43671-5 35.
  • [18] M. Pandelea, L. Vladareanu, M. Iliescu, R. I. Munteanu, M. Radulescu, ”Intelligent Advanced Control Strategies for Mobile Autonomous Robots Stability Through Versatile, Intelligent, Portable VIPRO Platform,” The 42th International Conference on ICMSAV, pp.184-189, 2018.
  • [19] M. Ghaffari Jadidi, J. Valls Miro, G. Dissanayake, ”Gaussian processes autonomous mapping and exploration for range-sensing mobile robots” Autonomous Robots 42, 273290 (2018), doi: 10.1007/s10514-017-9668-3.
  • [20] M. Hassanalian, A. Abdelkefi, ”Classifications, applications, and design challenges of drones: A review”, Progress in Aerospace Sciences 91, 99-131 (2017), doi:10.1016/j.paerosci.2017.04.003.
  • [21] S. Waharte, N. Trigoni, ”Supporting Search and Rescue Operations with UAVs,” 2010 International Conference on Emerging Security Technologies, Canterbury, 2010, pp. 142-147, doi: 10.1109/EST.2010.31.
  • [22] G. Singhal, B. Gaurav, L. Mathew, ”Unmanned Aerial Vehicle Classification, Applications and Challenges: A Review”, Europe PMC, 2018, doi: 10.20944/preprints201811.0601.v1
  • [23] H. González-Jorge, J. Martínez-Sánchez, M. Bueno, ”Unmanned aerial systems for civil applications: A review”, Drones, vol. 1, p. 2, 2017, doi:10.3390/drones1010002.
  • [24] https://v22.wiki.optitrack.com/index.php?title=Rigid_Body_Tracking
  • [25] https://www.quanser.com/products/autonomous-vehicles-research-studio/
  • [26] https://www.quanser.com/products/qdrone/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d599660f-66a3-4ee7-953e-2e09ebea0db2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.