Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Nordic and Barents Seas are of special interest for research on climate change, since they are located on the main pathway of the heat transported from low to high latitudes. The Barents Sea is characterized by supreme phytoplankton blooms and large amount of carbon is sequestered here due to biological processes. It is important to monitor the biological variability in this region in order to derive in depth understanding whether the size of carbon reservoirs and fluxes may vary as a result of climate change. In this paper we analyze the 17 years (1998–2014) of particulate organic carbon (POC) concentration derived from remotely sensed ocean color. POC concentrations in the Barents Sea are among the highest observed in the global ocean with monthly mean concentrations in May exceeding 300 mg m−3. The seasonal amplitude of POC concentration in this region is larger when compared to other regions in the global ocean. Our results indicate that the seasonal increase in POC concentration is observed earlier in the year and higher concentrations are reached in the southeastern part of the Barents Sea in comparison to the southwestern part. Satellite data indicate that POC concentrations in the southern part of the Barents Sea tend to decrease in recent years, but longer time series of data are needed to confirm this observation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
249--263
Opis fizyczny
Bibliogr. 74 poz., wykr., mapy
Twórcy
autor
- Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland
- Department of Earth Sciences, Szczecin University, Szczecin, Poland
autor
- Department of Earth Sciences, Szczecin University, Szczecin, Poland
Bibliografia
- [1] Ådlandsvik, B., Loeng, H., 1991. A study of the climatic system in the Barents Sea. Polar Res. 10 (1), 45—50, http://dx.doi.org/10.1111/j.1751-8369.1991.tb00633.x.
- [2] Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., Ingvaldsen, R. B., 2012. Quantifying the influence of Atlantic heat on Barents Sea variability and retreat. J. Climate 25, 4736—4743.
- [3] Behrenfeld, M. J., 2010. Abandoning Sverdrup's critical depth hypothesis on phytoplankton blooms. Ecology 91 (4), 977—989, http://dx.doi.org/10.1890/09-1207.1.
- [4] Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L., Feldman, G. C., Milligan, A. J., Falkowski, P. G., Letelier, R. M., Boss, E. S., 2006. Climate-driven trends in contemporary ocean productivity. Nature 444 (7120), 752—755, http://dx.doi.org/10.1038/nature05317.
- [5] Bendat, J. S., Piersol, A. G., 2010. Random Data: Analysis and Measurement Procedures, 4th ed. Wiley, New Jersey, 640 pp.
- [6] Beszczynska-Möller, A., Fahrbach, E., Schauer, U., Hansen, E., 2012. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997—2010. ICES J. Mar. Sci. 69 (5), 852—863, http://dx.doi.org/10.1093/icesjms/fss056.
- [7] Boyer, T. P., Antonov, J. I., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Johnson, D. R., Locarnini, R. A., Mishonov, A. V., O'Brien, T. D., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Zweng, M. M., 2013. World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed. Silver Spring, MD, http://dx.doi.org/10.7289/V5NZ85MT, 209 pp.
- [8] Campbell, J. W., Blaisdell, J. M., Darzi, M., 1995. Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms. SeaWiFS Tech. Rep. Ser. 32, 73 pp.
- [9] Chiswell, S. M., 2011. Annual cycles and spring blooms in phytoplankton: don't abandon Sverdrup completely. Mar. Ecol. Prog. Ser. 443, 39—50, http://dx.doi.org/10.3354/meps09453.
- [10] Cole, H., Henson, S., Martin, A., Yool, A., 2012. Mind the gap: the impact of missing data on the calculation of phytoplankton phenology metrics. J. Geophys. Res.-Oceans 117 (C8), C08030, http://dx.doi.org/10.1029/2012JC008249.
- [11] Dmitrenko, I. A., Rudels, B., Kirillov, S. A., Aksenov, Y. O., Lien, V. S., Ivanov, V. V., Schauer, U., Polyakov, I. V., Coward, A., Barber, D. G., 2015. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. J. Geophys. Res.-Oceans 120 (7), 5158—5178, http://dx.doi.org/10.1002/2015JC010804.
- [12] Doron, M., Babin, M., Mangin, A., Hembise, O., 2007. Estimation of light penetration, and horizontal and vertical visibility in oceanic and coastal waters from surface reflectance. J. Geophys. Res. 112 (C6), C06003, http://dx.doi.org/10.1029/2006JC004007.
- [13] Duforêt-Gaurier, L., Loisel, H., Dessailly, D., Nordkvist, K., Alvain, S., 2010. Estimates of particulate organic carbon over the euphotic depth from in situ measurements. Application to satellite data over the global ocean. Deep-Sea Res. Pt I 57 (3), 351—367, http://dx.doi.org/10.1016/j.dsr.2009.12.007.
- [14] Fasham, M., Ducklow, H. W., McKelvie, S. M., 1990. A nitrogen based model of plankton dynamics in the oceanic mixed layer. J. Mar. Res. 48 (3), 591—639.
- [15] Franz, B. A., Bailey, S. W., Werdell, P. J., McClain, C. R., 2007. Sensorindependent approach to the vicarious calibration of satellite ocean color radiometry. Appl. Optics 46 (22), 5068—5082, http://dx.doi.org/10.1364/AO.46.005068.
- [16] Furevik, T., 2001. Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980—1996. Deep-Sea Res. Pt I 48 (2), 383—404.
- [17] Gardner, W. D., Mishonov, A. V., Richardson, M. J., 2006. Global POC concentrations from in-situ and satellite data. Deep-Sea Res. Pt II 53 (5—7), 718—740, http://dx.doi.org/10.1016/j.dsr2.2006.01.029.
- [18] Good, S. A., Corlett, G. K., Remedios, J. J., Noyes, E. J., Llewellyn-Jones, D. T., 2007. The global trend in sea surface temperature from 20 years of Advanced Very High Resolution Radiometer Data. J. Climate 20, 1255—1264, http://dx.doi.org/10.1175/JCLI4049.1.
- [19] Guemas, V., Salas-Melia, D., 2008. Simulation of the Atlantic meridional overturning circulation in an atmosphere-ocean global coupled model. Part II: A weakening in a climate change experiment: a feedback mechanism. Clim. Dynam. 30 (7), 831—844, http://dx.doi.org/10.1007/s00382-007-0328-8.
- [20] Henson, S. A., Sarmiento, J. L., Dunne, J. P., Bopp, L., Lima, I., Doney, S. C., John, J., Beaulieu, C., 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7 (2), 621—640, http://dx.doi.org/10.5194/bg-7-621-2010.
- [21] Hofmann, M., Worm, B., Rahmstorf, S., Schellnhuber, H. J., 2011. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6 (3), 1—7, http://dx.doi.org/10.1088/1748-9326/6/3/034035.
- [22] Jakowczyk, M., Stramska, M., 2014. Spatial and temporal variability of satellite-derived sea surface temperature in the Barents Sea. Int. J. Remote Sens. 35 (17), 6545—6560, http://dx.doi.org/10.1080/01431161.2014.958247.
- [23] Kirk, J. T. O., 1984. Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnol. Oceanogr. 29 (2), 350—356.
- [24] Kirk, J. T. O., 1991. Volume scattering function, average cosines, and the underwater light field. Limnol. Oceanogr. 36 (3), 455—467.
- [25] Kivimäe, C., Bellerby, R. G. J., Fransson, A., Reigstad, M., Johannessen, T., 2010. A carbon budget for the Barents Sea. Deep-Sea Res. Pt I 57 (12), 1532—1542, http://dx.doi.org/10.1016/j.dsr.2010.05.006.
- [26] Kowalik, Z., Proshutinsky, A. Y., 1995. Topographic enhancement of tidal motion in the western Barents Sea. J. Geophys. Res.-Oceans 100 (C2), 2613—2637.
- [27] Le Provost, C., 2001. Ocean tides. In: Fu, L.-L., Cazenave, A. (Eds.), Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. Int. Geophys. Ser., vol. 69. Academic Press, San Diego, CA, pp. 267—304.
- [28] Lebedev, S., Kostyanoy, A. G., Ginzburg, A. I., Medvedev, D. P., Sheremet, N. A., Shauro, S. N., 2011. Satellite altimetry applications in the Barents and White seas. In: Vignudelli, S., Kostianoy, A. G., Cipollini, P., Benveniste, J. (Eds.), Coastal Altimetry. Springer-Verlag, Berlin, Heidelberg, 389—415.
- [29] Lee, Z.-P., Darecki, M., Carder, K. L., Davis, C. O., Stramski, D., Rhea, W. J., 2005a. Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods. J. Geophys. Res. 110 (C2), C02017, http://dx.doi.org/10.1029/2004JC002573.
- [30] Lee, Z.-P., Du, K. P., Arnone, R., 2005b. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. 110 (C2), C02016, http://dx.doi.org/10.1029/2004JC002275.
- [31] Lee, Z.-P., Weidemann, A., Kindle, J., Arnone, R., Carder, K. L., Davis, C., 2007. Euphotic zone depth: its derivation and implication to ocean-color remote sensing. J. Geophys. Res. 112 (C3), C03009, http://dx.doi.org/10.1029/2006JC003802.
- [32] Lien, V. S., Trofimov, A. G., 2013. Formation of Barents Sea branch water in the northeastern Barents Sea. Polar Res. 32, 18905, http://dx.doi.org/10.3402/polar.v32i0.18905.
- [33] Lien, V. S., Vikebo, F. B., Skagseth, O., 2013. One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nat. Commun. 4, 1488, http://dx.doi.org/10.1038/ncomms2505.
- [34] Luo, J.-J., Behera, S. K., Masumoto, Y., Yamagata, T., 2011. Impact of global ocean surface warming on seasonal-to-interannual climate prediction. J. Climate 24 (6), 1626—1646, http://dx.doi.org/10.1175/2010JCLI3645.1.
- [35] Marra, J. F., Dickey, T. D., Plueddemann, A. J., Weller, R. A., Kinkade, C. S., Stramska, M., 2015. Phytoplankton bloom phenomena in the North Atlantic Ocean and Arabian Sea. ICES J. Mar. Sci., http://dx.doi.org/10.1093/icesjms/fsu241.
- [36] Maslowski, W., Marble, D., Walczowski, W., Schauer, U., Clement, J. L., Semtner, A. J., 2004. On climatological mass, heat, and salt transports through the Barents Sea and Fram Strait from a Pan-Arctic coupled ice ocean model simulation. J. Geophys. Res. 109 (C3), C03032, http://dx.doi.org/10.1029/2001JC001039.
- [37] Merchant, C. J., LeBorgne, P., 2010. Retrieval of sea surface temperature from space, based on modeling of infrared radiative transfer: capabilities and limitations. J. Atmos. Ocean. Tech. 21 (11), 1734—1746, http://dx.doi.org/10.1175/JTECH1667.1.
- [38] Mobley, C. D., 1994. Light and Water. Radiative Transfer in Natural Waters. Academic Press, New York, 592 pp.
- [39] Monterey, G., Levitus, S., 1997. Seasonal variability of mixed layer depth for the World Ocean. NOAA Atlas, NESDIS 14, Washington, DC, 100 pp.
- [40] Morice, C. P., Kennedy, J. J., Rayner, N. A., Jones, P. D., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117 (D8), D08101, http://dx.doi.org/10.1029/2011JD017187.
- [41] Nerem, R. S., Chambers, D. P., Choe, C., Mitchum, G. T., 2010. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 33 (Suppl. 1), 435—446, http://dx.doi.org/10.1080/01490419.2010.491031.
- [42] Olsen, A., Johannessen, T., Rey, F., 2003. On the nature of the factors that control spring bloom development at the entrance to the Barents Sea and their interannual variability. Sarsia 88 (6), 379—393, http://dx.doi.org/10.1080/00364820310003145.
- [43] O'Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., McClain, C. R., 1998. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 103 (C11), 24937—24953, http://dx.doi.org/10.1029/98JC02160.
- [44] O'Reilly, J. E., Maritorena, S., Siegel, D. A., O'Brien, M. C., Toole, D., Mitchell, B. G., Kahru, M., Chavez, F. P., Strutton, P., Cota, G. F., Hooker, S. B., McClain, C. R., Carder, K. L., Muller-Karger, F., Harding, L., Magnuson, A., Phinney, D., Moore, G. F., Aiken, J., Arrigo, K. R., Letelier, R., Culver, M., 2000. Ocean color chlorophyll a algorithms for SeaWiFS, OC2 and OC4: Version 4. NASA Technical Memo 2000-206892, vol. 11. pp. 9—27.
- [45] Oziel, L., Sirven, J., Gascard, J.-C., 2016. The Barents Sea frontal zones and water masses variability (1980—2011). Ocean Sci. 12 (1), 169—184, http://dx.doi.org/10.5194/os-12-169-2016.
- [46] Padman, L., Erofeeva, S., 2004. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31 (2), L02303, http://dx.doi.org/10.1029/2003GL019003.
- [47] Racault, M.-F., Sathyendranath, S., Platt, T., 2014. Impact of missing data on the estimation of ecological indicators from satellite ocean-colour time-series. Remote Sens. Environ. 152, 15—28, http://dx.doi.org/10.1016/j.rse.2014.05.016.
- [48] Rey, F., 1981. The development of the spring phytoplankton outburst at selected sites off the Norwegian coast. In: Sætre, R., Mork, M. (Eds.), The Norwegian Coastal Current. Univ. Bergen, 649—680.
- [49] Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G., 2007. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20 (22), 5473—5496, http://dx.doi.org/10.1175/2007JCLI1824.1.
- [50] Rudels, B., Jones, E. P., Schauer, U., Eriksson, P., 2004. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Res. 23 (2), 181—208, http://dx.doi.org/10.1111/j.1751-8369.2004.tb00007.x.
- [51] Schauer, U., Beszczynska-Möller, A., Walczowski, W., Fahrbach, E., Piechura, J., Hansen, E., 2008. Variation of measured heat flow through the Fram Strait between 1997 and 2006. In: Dickson, R. R., Meincke, J., Rhines, P. (Eds.), Arctic Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate. Springer, New York, 65—85.
- [52] Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. K., Dieck, W., 2002. Atlantic water flow through the Barents and Kara seas. Deep-Sea Res. Pt I 49 (12), 2281—2298, http://dx.doi.org/10.1016/S0967-0637(02)00125-5.
- [53] Semeneov, V. A., Park, W., Latif, M., 2009. Barents Sea inflow shutdown: a new mechanism for rapid climate changes. Geophys. Res. Lett. 36 (14), L14709, http://dx.doi.org/10.1029/2009GL038911.
- [54] Serreze, M., Barrett, A., Slater, A., Steele, M., Zhang, J., Trenberth, K., 2007. The large-scale energy budget of the Arctic. J. Geophys. Res. 112 (D11), 1438—1445, http://dx.doi.org/10.1029/2006JD008230.
- [55] Siegel, D. A., Behrenfeld, M. J., Maritorena, S., McClain, C. R., Antoine, D., Bailey, S. W., Bontempi, P. S., Boss, E. S., Dierssen, H. M., Doney, S. C., Eplee, R. E., Evans, R. H., Feldman, G. C., Fields, E., Franz, B. A., Kuring, N. A., Mengelt, C., Nelson, N. B., Patt, F. S., Robinson, W. D., Sarmiento, J. L., Swan, C. M., Werdell, P. J., Westberry, T. K., Wilding, J. G., Yoder, J. A., 2013. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77—91, http://dx.doi.org/10.1016/j.rse.2013.03.025.
- [56] Skjelvan, I., Olsen, A., Anderson, L. G., Bellerby, R. G. J., Falck, E., Kasajima, Y., Kivimae, C., Omar, A., Rey, F., Olsson, K. A., Johannessen, T., Heinze, C., 2005. A review of the biogeochemistry of the Nordic Seas and Barents Sea. In: Drange, H., Dokken, T., Furevik, T., Gerdes, R., Berger, W. (Eds.), The Nordic Seas: An Integrated Perspective Oceanography, Climatology and Modelling. American Geophysical Union, Washington, DC, 157—175.
- [57] Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li, C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken, B., Sandø, A. B., Semenov, V. A., Sorokina, S. A., 2013. The role of the Barents Sea in the Arctic climate system. Rev. Geophys. 51 (3), 415—449, http://dx.doi.org/10.1002/rog.20017.
- [58] Stramska, M., 2005. Interannual variability of seasonal phytoplankton blooms in the north polar Atlantic in response to atmospheric forcing. J. Geophys. Res. 110 (C5), C05016, http://dx.doi.org/10.1029/2004JC002457.
- [59] Stramska, M., 2010. The diffusive component of particulate organic carbon export in the North Atlantic estimated from SeaWiFS ocean color. Deep-Sea Res. Pt I 57 (2), 284—296, http://dx.doi.org/10.1016/j.dsr.2009.11.007.
- [60] Stramska, M., 2014. Particulate organic carbon in the surface waters of the North Atlantic: spatial and temporal variability based on satellite ocean colour. Int. J. Remote Sens. 35 (13), 4717—4738, http://dx.doi.org/10.1080/01431161.2014.919686.
- [61] Stramska, M., Cieszyńska, A., 2015. Ocean colour estimates of particulate organic carbon reservoirs in the global ocean — revisited. Int. J. Remote Sens. 36 (14), 3675—3700, http://dx.doi.org/10.1080/01431161.2015.1049380.
- [62] Stramska, M., Dickey, T. D., 1994. Modeling phytoplankton dynamics in the northeast Atlantic during the initiation of the spring bloom. J. Geophys. Res. 99 (c5), 10241—10253, http://dx.doi.org/10.1029/93JC03378.
- [62] Stramska, M., Dickey, T. D., Plueddemann, A., Weller, R., Langdon, C., Marra, J., 1995. Bio-optical variability associated with phytoplankton dynamics in the North Atlantic Ocean during spring and summer of 1991. J. Geophys. Res. 100 (C4), 6621—6632, http://dx.doi.org/10.1029/94JC01447.
- [63] Stramska, M., Frye, D., 1997. Dependence of apparent optical properties on solar altitude: experimental results based on mooring data collected in the Sargasso Sea. J. Geophys. Res. 102 (C7), 15679—15691, http://dx.doi.org/10.1029/97JC00886.
- [64] Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., Claustre, H., 2008. Relationships between the surface concentration of particulate organic carbon and optical properties in the Eastern South Pacific and Eastern Atlantic Oceans. Biogeosciences 5, 171—201, http://dx.doi.org/10.5194/bg-5-171-2008.
- [65] Sverdrup, H. U., 1953. On conditions for the vernal blooming of phytoplankton. J. Con. Cons. Perm. Int. Explor. Mer. 18 (3), 287—295.
- [66] Świrgoń, M., Stramska, M., 2015. Comparison of in situ and satellite ocean color determinations of particulate organic carbon concentration in the global ocean. Oceanologia 57 (1), 25—31, http://dx.doi.org/10.1016/j.oceano.2014.09.002.
- [67] Terziev, F. S., Girduk, G. V., Zykova, G. G., Dzhenyuk, S. L. (Eds.), 1990. Hydrometeorology and Hydrochemistry of the Seas of the USSR, vol. 1, Barents Sea, Issue 1, Hydrometerologicla Conditions. Hydrometeoizdat, Leningrad (in Russian).
- [68] Tett, P., Edwards, A., 1984. Mixing and plankton: an interdisciplinary theme in oceanography. Oceanogr. Mar. Biol. 22, 99—123.
- [69] van de Poll, W. H., Kulk, G., Timmermans, K. R., Brussaard, C. P. D., van der Woerd, H. J., Kehoe, M. J., Mojica, K. D. A., Visser, R. J. W., Rozema, P. D., Buma, A. G. J., 2013. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227—4240, http://dx.doi.org/10.5194/bg-10-4227-2013.
- [70] Volkov, D. L., Landerer, F. W., Kirillov, S. A., 2013. The genesis of sea level variability in the Barents Sea. Cont. Shelf Res. 66, 92—104, http://dx.doi.org/10.1016/j.csr.2013.07.007.
- [71] Volkov, D. L., Pujol, M.-I., 2012. Quality assessment of a satellite altimetry data product in the Nordic, Barents, and Kara seas. J. Geophys. Res. 117 (C3), C03025, http://dx.doi.org/10.1029/2011JC007557.
- [72] Wassmann, P., Reigstad, M., Haug, T., Rudels, B., Carroll, M. L., Hop, H., Gabrielsen, G. W., Falk-Petersen, S., Denisenko, S. G., Arashkevich, E., Slagstad, D., Pavlova, O., 2006. Food webs and carbon flux in the Barents Sea. Prog. Oceanogr. 71 (2—4), 232—287, http://dx.doi.org/10.1016/j.pocean.2006.10.003.
- [73] Woźniak, S. B., 2014. Simple statistical formulas for estimating biogeochemical properties of suspended particulate matter in the southern Baltic Sea potentially useful for optical remote sensing applications. Oceanologia 56 (1), 7—39, http://dx.doi.org/10.5697/oc.56-1.007.
- [74] Woźniak, S. B., Meler, J., Lednicka, B., Zdun, A., Stoń-Egiert, J., 2011. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia 53 (3), 691—729, http://dx.doi.org/10.5697/oc.53-3.691.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d596f8d0-d1ac-4061-bae0-0633b40bb301