PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feedback linearization of an active magnetic bearing system operated with a zero-bias flux

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Input-output linearization by state feedback is applied to a flux-controlled active magnetic bearing (AMB) system, operated in the zero-bias mode. Two models of the AMB system are employed. The first one is described by the third-order dynamics with a flux-dependent voltage switching scheme, whereas the second one is the fourth-order system, called self-sensing AMB, since it does not require the measurement of the rotor position. In the case of that system we had to find the flat outputs to guarantee its stability. The proposed control schemes are verified by means of numerical simulations performed within the Matlab environment.
Rocznik
Strony
539--548
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Department of Software Science, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
autor
  • Department of Software Science, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
  • Department of Automatic Control and Robotics, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Department of Software Science, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia
Bibliografia
  • [1] Baloh, M., Tao, G. and Allaire, P. (2000). Modeling and control of a magnetic bearing actuated beam, American Control Conference, Chicago, IL, USA, pp. 1602–1606.
  • [2] Charara, A., De Miras, J. and Caron, B. (1996). Nonlinear control of a magnetic levitation system without premagnetization, IEEE Transactions on Control Systems Technology 4(5): 513–523.
  • [3] Chen, M. and Knospe, C.R. (2005). Feedback linearization of active magnetic bearings: Current-mode implementation, IEEE/ASME Transactions on Mechatronics 10(6): 632–639.
  • [4] Conte, G., Moog, C.H. and Perdon, A.M. (2007). Algebraic Methods for Nonlinear Control Systems. Theory and Applications, 2nd Edn., Springer, London.
  • [5] Ghosh, J., Mukherjee, D., Baloh, M. and Paden, B. (2000). Nonlinear control of a benchmark beam balance experiment using variable hyperbolic bias, American Control Conference, Chicago, IL, USA, pp. 2149–2153.
  • [6] Isidori, A. (1995). Nonlinear Control Systems, 3rd Edn., Springer, London.
  • [7] Jastrzebski, R.P., Smirnov, A., Mystkowski, A. and Pyrhönen, O. (2014). Cascaded position-flux controller for an AMB system operating at zero bias, Energies 7(6): 3561–3575.
  • [8] Joo, S.J. and Seo, J.H. (1997). Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system, IEEE Transactions on Control Systems Technology 5(1): 135–144.
  • [9] Ławryńczuk, M. (2015). Nonlinear state-space predictive control with on-line linearisation and state estimation, International Journal of Applied Mathematics and Computer Science 25(4): 833–847, DOI: 10.1515/amcs-2015-0060.
  • [10] Lévine, J. (2009). Analysis and Control of Nonlinear Systems: A Flatness-Based Approach, Springer, Berlin/Heidelberg.
  • [11] Lévine, J., Lottin, J. and Ponsart, J.-C. (1996). A nonlinear approach to the control of magnetic bearings, IEEE Transactions on Control Systems Technology 4(5): 524–544.
  • [12] Lindlau, J.D. and Knospe, C.R. (2002). Feedback linearization of an active magnetic bearing with voltage control, IEEE Transactions on Control Systems Technology 10(1): 21–31.
  • [13] Maslen, E.H. (2013). Self-sensing magnetic bearings, in G. Schweitzer and E.H.Maslen (Eds.), Magnetic Bearings: Theory, Design, and Application to Rotating Machinery, Springer, Berlin/Heidelberg, Chapter 15, pp. 435–459.
  • [14] Matsumura, F., Namerikawa, T. and Murata, N. (1999). Wide area stabilization of a magnetic bearing using exact linearization, Electrical Engineering in Japan 128(2): 53–62.
  • [15] Mittal, S. and Menq, C.-H. (1997). Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme, IEEE/ASME Transactions on Mechatronics 2(4): 268–280.
  • [16] Mystkowski, A., Pawluszewicz, E. and Dragašius, E. (2015a). Robust nonlinear position-flux zero-bias control for uncertain AMB system, International Journal of Control 88(8): 1619–1629.
  • [17] Mystkowski, A., Pawluszewicz, E. and Jastrzebski, R.P. (2015b). Nonlinear position-flux zero-bias control for AMB system, 20th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 471–476.
  • [18] Naz, N., Malik, M.B. and Salman, M. (2013). Real time implementation of feedback linearizing controllers for magnetic levitation system, IEEE Conference on Systems, Process and Control, Kuala Lumpur, Malaysia, pp. 52–56.
  • [19] Nijmeijer, H. and van der Schaft, A.J. (1990). Nonlinear Dynamical Control Systems, Springer, New York, NY.
  • [20] Sira-Ramírez, H. and Agrawal, S.K. (2004). Differentially Flat Systems, Automation and Control Engineering, Marcel Dekker, Inc., New York, NY.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5966249-bd5a-4fb9-b715-517494b66b64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.