PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gorky’s Gyrotron Heroes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents an outline of the history of scientists and the city where the world’s first relativistic CRM device, known today as a Gyrotron, was created. CRM can be explained as “a microwave source of stimulated radiation based on the cyclotron resonance phenomenon.”. The story begins in 1898 with the establishment of the Emperor Nicolas II Warsaw Polytechnic Institute and ends in 1964 with the launch of the world’s first Gyrotron at the Nizhegorodsky Polytechnical Institute (later Gorky). The principle of gyrotron operation is very briefly presented in the paper, but mainly, according to the idea of this work, a lot of space is devoted to people, scientists and organizers of science in Gorky, the first who created this device, and therefore the work is limited to presenting the events related to the creation of the Gyrotron in 1959‒1967.
Rocznik
Strony
1257--1262
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • Wroclaw University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] A. Žáček, “Nová metoda k vytvorení netlumenych oscilací” (A new method for generation of undamped oscillations (a pre-liminary report)), Časopis pro Pěstování Matematiky a Fysiky (Prague) 53, 378‒380 (1924).
  • [2] E. Habann, “Eine Neue Generatorroehre”, Zeit. fuer Hochfrequenz-technik, 24(5), 115‒120 (1924).
  • [3] H. Yagi, “Beam Transmission of Ultra Short Waves,” Proc. I. R. E. 16, 715‒741 (1928).
  • [4] A.W. Hull, “The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders,” Phys. Rev. 18(1), 31‒57 (1921).
  • [5] A.W. Hull, “The magnetron,” Journal of the American Institute of Electrical Engineers, 40(9), 715‒723 (1921).
  • [6] R.L. Wathen, “Genesis of a generator – the early history of the magnetron”, J. Frankl. Inst. 255(4), 271‒287 (1953).
  • [7] G. Doehler and W. Friz, “Physics and classification of fast-wave devices”, Int. J. Electron. 55(4), 505‒521 (1983).
  • [8] B.R. Wheaton, “Bremsstrahlung” in Compendium of Quantum Physics, chapt. 23, pp. 78‒81, eds. D. Greenberger, K. Hentschel, F. Weinert, Springer Science & Business Media, 2009.
  • [9] A. Sommerfeld, “Über die Verteilung der Intensität bei der Emission von Röntgenstrahlen”, Phys Zeit. 10, 969–976 (1909).
  • [10] A. Sommerfeld, “Theoretisches űber die Beugung der Röntgenstrahlen”, Phys Zeit. 1, 105–111 (1899); 2, 55–60 (1900).
  • [11] M.A. Miller, “Избранные очерки о зарождении и взрослении радиофизики в горьковско-нижегородских местах” (Selected Essays on the Origin and Growth of Radiophysics in Gorky-Nizhny Novgorod Places), Nizhny Novgorod, Inst. Appl. Phys., RAS, 1997.
  • [12] A.V. Gaponov, “Interaction of irrectilinear electron beams with electromagnetic waves in transmission lines,” Izv. VUZov. Radiofizika 2, 450‒462 (1959).
  • [13] A.V. Gaponov, “Letters to editor”, Izv. VUZov. Radiofizika 2, 836‒837 (1959).
  • [14] V.V. Zhelezniakov, “О неустойчивости магнитоактивной плазмы относительно высокочастотных электромагнитных возмущений”, (On the instability of a magneto-active plasma relative to high-frequency electromagnetic perturbations), Izv. VUZov. Radiofizika 3(1), 57‒66 (1960).
  • [15] I.I. Antakov and R.P. Vasilyev, “Экспериментальное исследование усилителя с бегущей волной и трохоидальным электронным потоком при наличии отбора ускоряемых электронов” (Experimental study of an amplifier with a traveling wave and a trochoidal electron beam in the presence of selection of accelerated electrons), Izv. VUZov. Radiofizika 2(5), 741‒747 (1959).
  • [16] R.Q. Twiss, “Radiation transfer and the possibility of negative absorption m radio astronomy,” Aust. J. Phys. 11, 564‒579 (1958).
  • [17] J. Schneider, “Stimulated emission of radiation by relativistic electrons in a magnetic field”, Phys. Rev. Lett. 2(12), 504‒505 (1959).
  • [18] L.A. Veînsteîn, “Open resonators for lasers”, Sov. Phys. J. Exp. Theor. Phys. 17(3), 709‒719 (1963).
  • [19] B.Z. Katsenelenbaum, “Theory of irregular waveguides with slowly changing parameters”, Unedited Machine Translation, FTD-ID(RS)T-0243‒79, 5 April 1979; pp. 1‒402, 1961; “Теория нерегулярных волноводов с медленно меняющимися параметрами”, Moscow, USSR, pp. 1‒215, 1961.
  • [20] L.A. Weînsteîn, Open resonators and open waveguides, chapt. 5, The Golem Press, Colorado, 1969.
  • [21] L. Landau, “Diamagnetismus der Metalle”, Cambridge, Cavendish Laboratory 5, 629‒637 (1930).
  • [22] G.S. Nusinovich, M.K.A. Thumm, and M.I. Petelin, “Gyrotron at 50: Historical Overview”, J. Infrared Millim. Terahertz Waves 35(4), 325‒381 (2014).
  • [23] M.I. Petelin, “The gyrotron: physical genealogy”, Terahertz Science and Technology 8(4), 157‒169 (2015).
  • [24] R.J. Temkin, “Soviet Gyrotron Research, 1967‒1979”, Plasma Fusion Center, MIT, Report No.: PFC/RR-81-13, pp. 1‒15, March 3, 1981.
  • [25] G.S. Nusinovich, Introduction to the Physics of Gyrotrons, chapt. 1, The Johns Hopkins University Press, Baltimore-London, 2004.
  • [26] M.V. Kartikeyan, E. Borie, and M. Thumm, “Gyrotrons: High-Power Microwave and Millimeter Wave Technology”, in Advanced Texts in Physics, Springer, 2003.
  • [27] E. Borie, “Review of Gyrotron Theory”, Kernforschungszentrum Karlsruhe, Institut für Technische Physik, KfK 4898, KIT, 1991.
  • [28] K.R. Chu, “The electron cyclotron maser”, Rev. Mod. Phys. 76, 489‒540 (2004).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d593f9db-d432-40e8-9685-0d3bc49d72c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.