PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dual-mode control magnetically-coupled energy storage inductor boost inverter for renewable energy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel magnetically-coupled energy storage inductor boost inverter circuit for renewable energy and the dual-mode control strategy with instantaneous value feedback of output voltage are proposed. In-depth research and analysis on the circuit, control strategy, voltage transmission characteristics, etc., providing the parameter design method of magnetically-coupled energy storage inductors and output filter. The circuit topology is cascaded by the input source 𝑉in, the input filter 𝐶in, a single-phase inverter bridge with a magnetically-coupled energy storage inductor, and a CL filter; The control strategy serves the output voltage as a reference to achieve the switch of step-down and step-up modes smoothly. The simulation results of a 1000 VA 100–200 VDC, 220 V 50 Hz AC inverter show that the proposed inverter can realize single-stage boost power conversion, which can adapt to resistive, capacitive and inductive loads, has high power density and low output waveform distortion. It has good application prospects in small and medium-capacity single-phase inverter occasions with low input voltag
Rocznik
Strony
211--225
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wz.
Twórcy
autor
  • Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University China
autor
  • Fujian Key Laboratory of New Energy Generation and Power Conversion, Fuzhou University China
  • Texas Instruments Semiconductor Technologies (Shanghai) Co., Ltd. China
autor
  • College of Electrical Engineering, Qingdao University China
Bibliografia
  • [1] Hussain H.M., Narayanan A., Nardelli P.H.J., Yang Y., What Is Energy Internet? Concepts, Technologies, and Future Directions, IEEE Access., vol. 8, pp. 183127–183145 (2020), DOI: 10.1109/access.2020.3029251.
  • [2] Tao Z., Jiahui J., Daolian C., An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter, Renewable Energy, vol. 178, pp. 1144–1155 (2021), DOI: 10.1016/j.renene.2021.06.134.
  • [3] Jiang J., Zhang T., Chen D., Analysis, Design, and Implementation of a Differential Power Processing DMPPT With Multiple Buck–Boost Choppers for Photovoltaic Module, IEEE Transactions on Power Electronics, vol. 36, no. 9, pp. 10214–10223 (2021), DOI: 10.1109/tpel.2021.3063230.
  • [4] Xianglin L., Zhiwei X., Xueyu Y., Lixia Z., Wenzhong M., Wei H., Low-complexity multivector-based model predictive torque control for PMSM with voltage preselection, IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11726–11738 (2021), DOI: 10.1109/tepl.2021.3073137.
  • [5] Xianglin L., Zhiwei X., Lixia Z., Wei H., A low-complexity three-vector-based model predictive torque control for SPMSM, IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 13002–13012 (2021), DOI: 10.1109/TPEL.2016.2532387.
  • [6] Rahbar K., Chai C.C., Zhang R., Energy cooperation optimization in microgrids with renewable energy integration, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1482–1493 (2018), DOI: 10.1109/tsg.2016.2600863.
  • [7] Quint R. et al., Transformation of the grid: the impact of distributed energy resources on bulk power systems, IEEE Power and Energy Magazine, vol. 17, no. 6, pp. 35–45 (2019), DOI: 10.1109/mpe. 2019.2933071.
  • [8] Salem Q., Liu L., Xie J., Dual operation mode of a transformerless h-bridge inverter in lowvoltage microgrid, IEEE Transactions on Industry Applications, vol. 55, no. 5, pp. 5289–5299 (2019), DOI: 10.1109/tia.2019.2917807.
  • [9] Hanchao Z., Daolian C., A single-stage isolated charging/discharging DC-AC converter with second harmonic current suppression in distributed generation systems, IECON 2017 – 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, pp. 4427–4432 (2017).
  • [10] Liu S., He Y., Wang G., Wang M., Power Decoupling Control for Boost-Type Single-Phase Inverter with Active Power Buffer, 2019 IEEE Energy Conversion Congress and Exposition, Maryland, USA, pp. 2280–2285 (2019).
  • [11] Stawiarski Ł., Piróg S., Active power decoupling topology for AC-DC and DC-AC single-phase systems with decoupling capacitor minimization, Archives of Electrical Engineering, vol. 67, no. 1, pp. 193–205 (2018), DOI: 10.24425/aee.2018.119001.
  • [12] Xu S., Chang L., Shao R., Single-phase voltage source inverter with voltage Boosting and power decoupling capabilities, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2977–2988 (2020), DOI: 10.1109/jestpe.2019.2936136.
  • [13] Chen Z., Wu Q., Yuan Y., A novel zero-voltage-switching push–pull high-frequency-link single-phase inverter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp. 421–434 (2016), DOI: 10.1109/jestpe.2015.2505171.
  • [14] Watanabe H., Itoh J., Novel DC to single-phase AC isolated current source inverter with power decoupling capability for micro-inverter system, 2015 IEEE Energy Conversion Congress and Exposition, Montreal, Canada, pp. 158–165 (2015).
  • [15] Chakraborty S., Chattopadhyay S., An isolated Buck-Boost type high-frequency link photovoltaic microinverter, 2016 IEEE Applied Power Electronics Conference and Exposition, California, USA, pp. 3389–3396 (2016).
  • [16] Jiang J., Li Z., Chen D., A quasi single stage isolated Buck-Boost mode multi-input inverter, 2019 10th International Conference on Power Electronics and ECCE Asia, Busan, Korea, pp. 1–6 (2019).
  • [17] Baoge Z., Deyu H., Tianpeng W., Zhen Z., Donghao W., A novel two-phase interleaved parallel bibidrectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–234 (2021), DOI: 10.24425/aee.2021.136063.
  • [18] Hong F., Liu J., Ji B., Zhou Y., Wang J., Wang C., Single inductor dual Buck full-bridge inverter, IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4869–4877 (2015), DOI: 10.1109/tie.2015.2399280.
  • [19] Zhang L., Zhang T., Hao Y., Wang B., Two-stage dual-Buck grid-tied inverters with efficiency enhancement, 2019 IEEE Applied Power Electronics Conference and Exposition, California, USA, pp. 3251–3256 (2019).
  • [20] Jagan V., Kotturu J., Das S., Enhanced-Boost quasi-z-source inverters with two-switched impedance networks, IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 6885–6897 (2017), DOI: 10.1109/tie.2017.2688964.
  • [21] Zhu X., Zhang B., Qiu D., A high Boost active switched quasi-z-source inverter with low input current ripple, IEEE Transactions on Industrial Informatics, vol. 15, no. 9, pp. 5341–5354 (2019), DOI: 10.1109/tii.2019.2899937.
  • [22] Leonardo P. Sampaio, Moacyr A.G. de Brito, Luigi G. Junior, Single-phase current-source-Boost inverter for renewable energy sources, 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, pp. 1118–1123 (2011), DOI: 10.1109/ISIE.2011.5984201.
  • [23] Nattymol Y.J., Shanavas T.N., Power quality analysis of single-phase transformer-less Buck-Boost inverter for compressor load, 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India (2019), DOI: 10.1109/INCOS45849.2019.8951345.
  • [24] Sreekanth T., Lakshmi Narasamma N., Mahesh K. Mishra, Sijo Augustine, A single stage coupled inductor based high gain DC-AC Buck-Boost inverter for photovoltaic (PV) applications, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA (2015), DOI: 10.1109/pvsc.2015.7356269
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d58765ec-dc8d-4543-9a7a-558287d68669
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.