Identyfikatory
Warianty tytułu
B vitamins : description of physicochemical properties and bioactivity by exemplary cheminformatics tools
Języki publikacji
Abstrakty
This paper presents a literature review of the biochemistry of vitamins B and the results of in silico physicochemical properties and bioactivity studies. The description was performed by cheminformatics tools closely related to the field of Medicinal Chemistry. It allows us to predict a great number of properties e.g. logP, TPSA, molecular volume or bioactivity associated with the chosen proteins (like kinases, proteases etc.). These investigations were carried out with the use of cheminformatics web tool Molinspiration. Its great advantages are mainly its wide availability, ease of application and quick analysis of small compounds. Thanks to the comparison with literature data of well–known B vitamins, it is possible to confirm that current cheminformatic web tools provide high reliability of the results and can support Drug Design methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
873--896
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
autor
- absolwentka Uniwersytetu Wrocławskiego, Wydziału Chemii, ul. F. Joliot–Curie 14, 50–383 Wrocław
autor
- Uniwersytet Wrocławski, Wydział Chemii, ul. F. Joliot–Curie 14, 50–383 Wrocław
Bibliografia
- [1] A. Blanco, G. Blanco, Medical Biochemistry, Chapter 8 – Enzymes, Academic Press, 2017, p.153–175.
- [2] G.M. Ullmann, Supramolecular Photosensitive and Electroactive Materials, Chapter 6 – Charge Transfer Properties of Photosynthetic and Respiratory Proteins, Academic Press, 2001, p.525–584.
- [3] R. Renneberg, V. Berkling, V. Loroch, Biotechnology for Beginners (Second Edition), Chapter 2 – Enzymes: Molecular Supercatalysts for Use at Home and in Industry, Academic Press, 2017, p.33–63.
- [4] G. Litwack, Human Biochemistry, Chapter 5 – Enzymes, Academic Press, 2018, p. 95–129.
- [5] J.W. Fuquay, P.F. Fox, P.L.H. McSweeney, Encyclopedia of Dairy Sciences (Second Edition), Academic Press, 2011, p.396–402, vol.2.
- [6] N. Siddiqui, V. Singh, M.M. Deshmukh, R. Gurunath, Phys. Chem. Chem. Phys., 2015, 17, 18514.
- [7] M. Masoud, A. Ali, A. Elfatah, G. Amer, Open J. Inorg. Non met. Mater., 2021, 11, 1.
- [8] B. Vanhaesebroek, S. Leevers, K. Ahmadi, J. Timms, R. Katso, P.C. Drisscoll, R. Woscholski, P.J. Parker and M.D. Waterfield, Annu. Rev. Biochem., 2001, 70, 535.
- [9] E. Samain, Comprehensive Glycoscience: 1.23 – Production of Oligosaccharides in Microbes, Elsevier, 2007, p.923–947.
- [10] A. Gironés–Vilaplana, D. Villaño, J. Marhuenda, D.A. Moreno, C. García–Viguera, Nutraceutical and Functional Food Components: Chapter 6 – Vitamins, Academic Press, 2017, p.159–201.
- [11] J. Gawęcki, Witaminy, Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań, 2002.
- [12] M. Jaehme, D. Slotboom, Biochim. Biophys. Acta., 2014, 1850(3), 565.
- [13] Y. Yang, A.A. Sauve, Biochim. Biophys. Acta Proteins Proteom., 2016, 1864(12), 1787.
- [14] J.W. Miller, L.M. Rogers, R.B. Rucker, Present Knowledge in Nutrition, Ninth Edition, Chapter 25: Pantothenic Acid, International Life Sciences Institute, 2012.
- [15] M. Parra, S. Stahl, H. Hellmann, Cells, 2018, 7(7), 84.
- [16] American Chemical Society National Historic Chemical Landmarks, The Vitamin B Complex, www.acs.org/education/whatischemistry/landmarks/vitamin-b-complex.html.
- [17] A. Tylicki, M. Siemieniuk, Postępy Hig. Med. Dosw. (Online), 2011, 65, 447.
- [18] D.O. Kennedy, Nutrients, 2016, 8(2), 68.
- [19] G.F. Combs, The Vitamins (Fourth Edition): Chapter 10 – Thiamin, Academic Press, 2012, p.261–276.
- [20] C.A. Northrop–Clewes, D.I. Thurnham, Ann. Nutr. Metab., 2012, 61(3), 224.
- [21] M.M.E. Huijbers, M. Martínez-Júlvez, A.H. Westphal, E. Delgado-Arciniega, M. Medina, W.J.H. van Berkel, Sci. Rep., 2017, 7, 43880.
- [22] T. Zhou, H. Li, M. Shang, D. Sun, C. Liu, G. Che, TrAC –Trends Anal. Chem., 2021, 143, 116412.
- [23] F. Abyar, I. Novak, Spectrochimic. Acta A: Mol. Biomol. Spectrosc., 2022, 264, 120268.
- [24] J. Hu, W. Chuenchor, S.E. Rokita, J. Biol. Chem., 2015, 290(1), 590.
- [25] M. Mehmel, N. Jovanović, U. Spitz, Nutrients, 2020, 12(6), 1616.
- [26] P.M. Suter, Essential and Toxic Trace Elements and Vitamins in Human Health: Chapter 16 – The B–vitamins, Academic Press, 2020, p.217–239.
- [27] A. Harden, W.J. Young, Proc. R. Soc. B: Biol. Sci., 1906, 78, 369.
- [28] S.H. Ganji, V.S. Kamanna, M.L. Kashyap, J. Nutr. Biochem., 2003, 14(6), 298.
- [29] D.L. Cooper, D.E. Murrell, D.S. Roane, S. Harirforoosh, Int. J. Pharm., 2015, 490(1–2), 55.
- [30] U.S. Food and Drug Administration FDA, Generally Recognized as Safe (GRAS), www.fda.gov.
- [31] D.J. Lanska, Ann. Nutr. Metab., 2012, 61(3), 246.
- [32] R. Leonardi, Y.M. Zhang, C.O. Rock, S. Jackowski, Prog. Lipid Res., 2005, 44(2–3), 125.
- [33] D.I. Chan, H.J. Vogel, Biochem. J., 2010, 430, 1.
- [34] A. Czumaj, S. Szrok–Jurga, A. Hebanowska, J. Turyn, J. Swierczynski, T. Sledzinski, E. Stelmanska, Int. J. Mol. Sci., 2020, 21(23), 9057.
- [35] I.H. Rosenberg, Ann. Nutr. Metab., 2012, 61(3), 236.
- [36] M.L. di Salvo, R. Contestabile, M.K. Safo, Biochim. Biophys. Acta Proteins Proteom., 2011, 1814(11), 1597.
- [37] K. Stach, W. Stach, K. Augoff, Nutrients, 2021, 13(9), 3229.
- [38] D. Laudert, H.P. Hohmann, Comprehensive Biotechnology (Third Edition), 3.50 – Application of Enzymes and Microbes for the Industrial Production of Vitamins and Vitamin–Like Compounds, Pergamon, 2011, p.616–634.
- [39] R.B. Rucker, C.L. Keen, F.M. Steinberg, Vitamins and Food–Derived Biofactors, Encyclopedia of Agriculture and Food Systems, Academic Press, 2014, p.356–377.
- [40] H.W. Heldt, B. Piechulla, Plant Biochemistry (Fourth Edition): 15 – Lipids are membrane constituents and function as carbon stores, Academic Press, 2011, p. 359–398.
- [41] H.M. Said, Sub–cell. Biochem., 2012, 56, 1.
- [42] A. León–Del–Río, J. Inherit. Metab. Dis., 2019, 42(4), 647.
- [43] S. Elrefai, B. Wolf, Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease (Fifth Edition), Chapter 48 – Disorders of Biotin Metabolism, Academic Press, 2015, p.531-539.
- [44] D.M. Mock, J. Nutr., 2017, 147(8), 1487.
- [45] S. Ebara, Congenit. Anom., 2017, 57(5), 138.
- [46] J.F. Goossens, X. Thuru, C. Bailly, Free Radic. Biol. Med., 2021, 171, 1.
- [47] H.I. Rosenberg, Ann. Nutr. Metab., 2012, 61, 231.
- [48] R. Pieroth, S. Paver, S. Day, C. Lammersfeld, Curr. Nutr. Rep., 2018, 7(3), 70.
- [49] A.V. Hoffbrand, D.G. Weir, Br. J. Haematol., 2001, 113(3), 579.
- [50] J. Polański, A. Bąk, Podstawy Chemoinformatyki Leków, Wydanie II rozszczerzone, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2018.
- [51] Molinspiration Cheminformatics free web services, Slovensky Grob, Slovakia, www.molinspiration.com.
- [52] D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28(1), 31
- [53] Y. Kwon, Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists, 4.2.4: Partition and Distribution Coefficients, Kluwer Academic/Plenum Publishers,
- New York, 2001, p.44.
- [54] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev., 1997, 23, 4.
- [55] P. Ertl, B. Rohde, P. Selzer, J. Med. Chem., 2000, 43, 3714.
- [56] A. Daina, O. Michielin, V. Zoete, Sci. Rep., 2017, 7, 42717.
- [57] A.K. Ghose, V.N. Viswanadhan, J.J. Wendoloski, J. Comb. Chem., 1999, 1, 55.
- [58] D.F. Veber, S.R. Johnson, H.Y. Cheng, B.R. Smith, K.W. Ward, K.D. Kopple, J. Med. Chem., 2002, 5, 2615.
- [59] W.J. Egan, K.M. Merz, J.J. Baldwin, J. Med. Chem., 2000, 43, 3867.
- [60] I. Muegge, S.L. Heald, D. Brittelli, J. Med. Chem., 2001, 44, 1841.
- [61] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J. Am. Chem. Soc., 1985, 107, 3902.
- [62] LiverTox: Clinical and Research Information on Drug–Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012–. Protein Kinase Inhibitors, 2022 Dec 29, www.ncbi.nlm.nih.gov/books/NBK548591/.
- [63] S.E. Lazerwith, D. Siegel, R.M. McFadden, M.R. Mish, W.C. Tse, New Antiretrovirals for HIV and Antivirals for HBV, Comprehensive Medicinal Chemistry III, 2017, Elsevier, p.628–664.
- [64] A.K. Patick, K.E. Potts, Clin. Microbiol. Rev., 1998, 11(4), 614.
- [65] P.J. Birch, L.V. Dekker, I.F. James, A. Southan, D. Cronk, Drug Discov., 2004, 9(9), 410.
- [66] E.R. Weikum, X. Liu, E.A. Ortlund, Protein Sci., 2018, 27, 1876.
- [67] D. Yang, Q. Zhou, V. Labroska, S. Qin, S. Darbalaei, Y. Wu, E. Yuliantie, L. Xie, H. Tao, J. Cheng, Q. Liu, S. Zhao, W. Shui, Y. Jiang, M.W. Wang, Signal Transduct. Target Ther., 2021, 6(1), 7.
- [68] J. Lombardino, J. Lowe, J., Nat. Rev. Drug Discov., 2004, 3, 853.
- [69] S. Iftkhar, A.G.C. de Sá, J.P.L. Velloso, R. Aljarf, D.E.V. Pires, D.B. Ascher, J. Chem. Inf. Model., 2022, 62, 20, 4827.
- [70] X. Pan, H. Wang, C. Li, J.Z.H. Zhang, J. Changge, J. Chem. Inf. Model., 2021, 61, 3159.
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d580595a-7818-4f67-b32b-0827db74f9aa