PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated detection of COVID-19 from CT scan using convolutional neural network

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under the prevailing circumstances of the global pandemic of COVID-19, early diagnosis and accurate detection of COVID-19 through tests/screening and, subsequently, isolation of the infected people would be a proactive measure. Artificial intelligence (AI) based solutions, using Convolutional Neural Network (CNN) and exploiting the Deep Learning model’s diagnostic capabilities, have been studied in this paper. Transfer Learning approach, based on VGG16 and ResNet50 architectures, has been used to develop an algorithm to detect COVID-19 from CT scan images consisting of Healthy (Normal), COVID-19, and Pneumonia categories. This paper adopts data augmentation and fine-tuning techniques to improve and optimize the VGG16 and ResNet50 model. Further, stratified 5-fold cross-validation has been conducted to test the robustness and effectiveness of the model. The proposed model performs exceptionally well in case of binary classification (COVID-19 vs. Normal) with an average classification accuracy of more than 99% in both VGG16 and ResNet50 based models. In multiclass classification (COVID-19 vs. Normal vs. Pneumonia), the proposed model achieves an average classification accuracy of 86.74% and 88.52% using VGG16 and ResNet50 architectures as baseline, respectively. Experimental results show that the proposed model achieves superior performance and can be used for automated detection of COVID-19 from CT scans.
Twórcy
  • Department of Electrical Engineering, Indian Institute of Technology Delhi, India
  • Department of ECE, NIT Hamirpur, India
  • Department of Electrical Engineering, Indian Institute of Technology Delhi, India
Bibliografia
  • [1] https://covid19.who.int/, last accessed on 09 Jan 21.
  • [2] Rajkumar RP. COVID-19 and mental health: a review of the existing literature. Asian J Psychiatry 2020;52 . https://doi.org/ 10.1016/j.ajp.2020.102066 102066.
  • [3] Luo M, Guo L, Yu M, Jiang W, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public – a systematic review and meta-analysis. Psychiatry Res 2020;291 . https://doi.org/ 10.1016/j.psychres.2020.113190 113190.
  • [4] Transmission of corona virus by asymptomatic cases: URL: http://www.emro.who.int/healthtopics/coronavirus/transmission-of-covid-19-byasymptomatic-cases.html, last accessed on 19 Oct 20.
  • [5] URL: https://www.fda.gov/consumers/consumerupdates/coronavirus-testing-basics, last accessed on 19 Oct 20.
  • [6] Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, Tao Q, Sun Z, Xia L. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology 2020;296(2):E32–40. https://doi.org/10.1148/ radiol.2020200642.
  • [7] Araujo-Filho JAB, Sawamura MVY, Costa AN, Cerri GG, Nomura CH. COVID-19 pneumonia: what is the role of imaging in diagnosis? J Brasileiro de Pneumol 2020;46(2) . https://doi.org/10.36416/1806-3756/e20200114 e20200114.
  • [8] Coronavirus tests: URL: https://www.nature.com/articles/ d41586-020-02140-8, last accessed on 19 Oct 20.
  • [9] Castillo O, Melin P. Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic. Chaos Solitons Fractals 2020;140 . https://doi.org/10.1016/j.chaos.2020.110242 110242.
  • [10] Sun T, Wang Y. Modeling COVID-19 epidemic in Heilongjiang province, China. Chaos Solitons Fractals 2020;138 . https:// doi.org/10.1016/j.chaos.2020.109949 109949.
  • [11] Singh P, Gupta A. Generalized SIR (GSIR) epidemic model: an improved framework for the predictive monitoring of COVID19 pandemic. ISA Trans 2021;15:S0019-0578(21)00099-9. https://doi.org/10.1016/j.isatra.2021.02.016.
  • [12] Singhal A, Singh P, Lall B, Joshi SD. Modeling and prediction of COVID-19 pandemic using Gaussian mixture model. Chaos Solitons Fractals 2020;138. https://doi.org/10.1016/j. Chaos.2020.110023. 110023.
  • [13] URL: https://radiologyassistant.nl/chest/covid-19/covid19- imaging-findings, last accessed on 19 Oct 20.
  • [14] Hani C, Trieu NH, Saab I, Dangeard S, Bennani S, Chassagnon G, Revel MP. COVID-19 pneumonia: a review of typical CT findings and differential diagnosis. Diagnost Intervent Imag 2020;101(5):263–8. https://doi.org/10.1016/j.diii.2020.03.014.
  • [15] Fraiwan L, Hassanin O, Fraiwan M, Khassawneh B, Ibnian AM, Alkhodari M. Automatic identification of respiratory diseases from stethoscopic lung sound signals using ensemble classifiers. Biocybern Biomed Eng 2021;41(1):1–14. https://doi.org/10.1016/j.bbe.2020.11.003.
  • [16] Alfian G, Syafrudin M, Anshari M, Benes F, Atmaji FTD, Fahrurrozi I, Hidayatullah AF, Rhee J. Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybern Biomed Eng 2020;40(4):1586–99. https://doi.org/10.1016/j. Bbe.2020.10.004.
  • [17] Daoud H, Bayoumi MA. Efficient epileptic seizure prediction based on deep learning. IEEE Trans Biomed Circuits Syst 2019;13(5):804–13. https://doi.org/10.1109/ TBCAS.2019.2929053.
  • [18] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521 (7553):436–44. https://doi.org/10.1038/nature14539.
  • [19] Gehlot S, Gupta A, Gupta R. SDCT-AuxNeth: DCT augmented stain deconvolutional CNN with auxiliary classifier for cancer diagnosis. Med Image Anal 2020;61:1–15. https://doi.org/ 10.1016/j.media.2020.101661.
  • [20] Gupta A, Singh P, Karlekar MA. Novel signal modeling approach for classification of seizure and seizure-free EEG signals. IEEE Trans Neural Syst Rehab Eng 2018;26(5):925–35. https://doi.org/10.1109/TNSRE.2018.2818123.
  • [21] Mesleh AM. Lung cancer detection using multi-layer neural networks with independent component analysis: a comparative study of training algorithms. Jordan J Biol Sci 2017;10(4):239–49.
  • [22] Convolutional Neural Network: URL: https://cs231n.github. io/convolutional-networks/, last accessed on 11 Oct 20.
  • [23] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition; 2014, arXiv:1409.1556.
  • [24] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition Las Vegas NV 2016:770–8. https://doi.org/10.1109/ CVPR.2016.90.
  • [25] Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. IEEE Conference on Computer Vision and Pattern Recognition Las Vegas NV 2016:2818–26. https://doi.org/10.1109/ CVPR.2016.308.
  • [26] Chollet F. Xception: deep learning with depthwise separable convolutions. IEEE Conference on Computer Vision and Pattern Recognition Honolulu HI 2017:1800–7. https://doi.org/ 10.1109/CVPR.2017.195.
  • [27] Szegedy C, Ioffe S, Vanhoucke V, Alemi A. Inception-v4, Inception–Resnet and the impact of residual connections on learning. Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence San Francisco CA USA AAAI Press 2017;4278–4284.https://doi.org/ 10.5555/3298023.3298188.
  • [28] Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. IEEE Conference on Computer Vision and Pattern Recognition Honolulu HI USA 2017:2261–9. https://doi.org/10.1109/CVPR.2017.243.
  • [29] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020;121 . https://doi.org/10.1016/j.compbiomed.2020.103792 103792.
  • [30] Panwar H, Gupta PK, Siddiqui MK, Menendez RM, Singh V. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos Solitons Fractals 2020;138 . https://doi.org/10.1016/j. Chaos.2020.109944 109944.
  • [31] Rahimzadeh M, Attar A. A modified deep convolutional neural network for detecting COVID-19 and pneumonia from chest X-ray images based on the concatenation of Xception and ResNet50V2. Inf Med Unlocked 2020;19:100360. https://doi.org/10.1016/j.imu.2020.100360.
  • [32] Luz E, Silva PL, Silva R, Moreira G. Towards an efficient deep learning model for covid-19 patterns detection in x-ray images; 2020, arXiv:2004.05717.
  • [33] Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med 2020;121 . https://doi.org/10.1016/ j.compbiomed.2020.103792 103792.
  • [34] Wang N, Liu H, Xu C. Deep learning for the detection of COVID-19 using transfer learning and model integration. IEEE 10th International Conference on Electronics Information and Emergency Communication Beijing China 2020;281–284. doi: 10.1109/ICEIEC49280.2020.9152329.
  • [35] Asnaoui KE, Chawki Y. Using X-ray images and deep learning for automated detection of coronavirus disease. J Biomol Struct Dyn 2020:1–12. https://doi.org/10.1080/ 07391102.2020.1767212.
  • [36] Zhang HT, Zhang JS, Zhang HH, Nan YD, Zhao Y, Fu EQ, Xie YH, Liu W, Li WP, Zhang HJ, Jiang H, Li CM, Li YY, Ma RN, Dang SK, Gao BB, Zhang XJ, Zhang T. Automated detection and quantification of COVID-19 pneumonia: CT imaging analysis by a deep learning-based software. Eur J Nucl Med Mol Imag 2020;47(11):2525–32. https://doi.org/10.1007/s00259-020- 04953-1.
  • [37] Wang L, Wong A. COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images; 2020, arXiv:2003.09871.
  • [38] Horry MJ, Chakraborty S, Paul M, Ulhaq A, Pradhan B, Saha M, Shukla N. COVID-19 detection through transfer learning using multimodal imaging data. IEEE Access 2020;8:149808–24. https://doi.org/10.1109/ ACCESS.2020.3016780.
  • [39] Varela-Santos S, Melin P. A new modular neural network approach with fuzzy response integration for lung disease classification based on multiple objective feature optimization in chest X-ray images. Expert Syst Appl 2021;168(114361):0957–4174. https://doi.org/10.1016/j. Eswa.2020.114361.
  • [40] Varela-Santos S, Melin P. A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Inf Sci 2021;545:403–14. https://doi.org/10.1016/j. Ins.2020.09.041.
  • [41] Satapathy SC, Zhu LY, G’orriz JM. A seven-layer convolutional neural network for chest CT based COVID-19 diagnosis using stochastic pooling. IEEE Sens J 2020;1. https://doi.org/10.1109/ JSEN.2020.3025855.
  • [42] Wang SH, Nayak DR, Guttery DS, Zhang X, Zhang YD. COVID19 classification by CCSHNet with deep fusion using transfer learning and discriminant correlation analysis. Inf Fusion 2021;68:131–48. https://doi.org/10.1016/j.inffus.2020.11.005
  • [43] Ohata EF, Bezerra GM, Chagas JVSD, Lira Neto AV, Albuquerque AB, Albuquerque VHCD, Reboucas Filho PP. Automatic detection of COVID-19 infection using chest X-ray images through transfer learning. IEEE/CAA J Automatica Sin 2021;8(1):239–248. .https://doi.org/10.1109/JAS.2020.1003393.
  • [44] Kalane P, Patil S, Patil BP, Sharma DP. Automatic detection of COVID-19 disease using U-net architecture based fully convolutional network. Biomed Signal Process Control 2021. https://doi.org/10.1016/j.bspc.2021.102518. 102518.
  • [45] Turkoglu M. COVID-19 detection system using chest CT images and multiple kernels-extreme learning machine based on deep neural network. IRBM J 2021. https://doi.org/ 10.1016/j.irbm.2021.01.004.
  • [46] Elkorany AS, Elsharkawy ZF. COVIDetection-Net: a tailored COVID-19 detection from chest radiography images using deep learning. Optik (Stuttgart) J 2021;231. https://doi.org/ 10.1016/j.ijleo.2021.166405. 166405.
  • [47] Normal (Healthy) CT scan images: URL: https://www. kaggle.com/plameneduardo/sarscov2-ctscan-dataset, last accessed on 15 Sep 2020.
  • [48] COVID-19 infected CT scan images: URL: https://www.sirm. org/, last accessed on 10 Sep 2020.
  • [49] COVID-19 and Pneumonia infected CT scan images: URL: https://radiopaedia.org/cases, last accessed on 15 Sep 2020.
  • [50] Ioffe S, Szegedy C. Batch Normalization: accelerating deep network training by reducing internal covariate shift. Proceedings of the 32nd International Conference on Machine Learning 2015;37:448–456.
  • [51] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929–58. [52] Keras Library for software coding: URL: https://keras.io/, last accessed on 03 Oct 2020.
  • [53] Confusion matrix: URL: https://en.wikipedia.org/wiki/ Confusion_matrix, last accessed on 26 Aug 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d57dad56-94c0-4d09-a10e-ae596d6c4b25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.