PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Evaluation of Hydrologic Modelling Using Satellite Product, and MMR Rainfall in East Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In Indonesia, ground-based rainfall monitoring is uneven and sometimes lacks continuity especially in small watersheds, which makes hydrological modeling difficult. This paper aims to the performance evaluation of the HBV Light model from the manual measurement of rainfall (MMR), Global Precipitation Measurement (GPM3IMERGDF), and Tropical Rainfall Measuring Mission (TRMM-3B42) as input for the hydrological model. The Hydrologiska Byrans Vattenbalansavdelning (HBV) Light hydrological model is applied to three small watersheds, namely Sampean Baru, Bedadung, and Mayang. The model’s performance evaluation is assessed based on the correlation between the average rainfall data for the satellite product area and the MMR product, the stationarity of the rainfall and discharge data, and the model accuracy. The model simulation results show that the MMR rainfall in all watersheds provides a better discharge response than the other two products. Meanwhile, the simulation model of the GPM-3IMERGDF satellite product is slightly better than TRMM-3B42. The stationarity test of rainfall and discharge data needs to be enforced before modeling.
Słowa kluczowe
Rocznik
Strony
246--260
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
  • Departement of Civil Engineering, University of Jember, Jalan Kalimantan No 37, 68121, Jember, Jawa Timur, Indonesia
Bibliografia
  • 1. Abebe N.A., Ogden F.L., Pradhan N.R. 2010. Sensitivity and uncertainty analysis of the conceptual HBV rainfall-runoff model: Implications for parameter estimation. Journal of Hydrology, 389(3–4), 301–310. https://doi.org/10.1016/j.jhydrol.2010.06.007
  • 2. Alazzy A.A., Lü H., Chen R., Ali A.B., Zhu Y., Su J. 2017. Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau. Advances in Meteorology, 2017. https://doi.org/10.1155/2017/3695285
  • 3. Alhamda M.Z., Hidayah E., Yunarni W. 2020. Perbandingan Estimasi Curah Hujan Mrr Dan Trmm B342 Sebagai Input Model Hidrologi Hbv Studi Kasus Das Bedadung. Rekayasa Sipil, 14(2), 112–119. https://rekayasasipil.ub.ac.id/index.php/rs/article/view/676/468
  • 4. Amorim J. da S., Viola M.R., Junqueira R., de Oliveira V.A., de Mello C.R. 2020. Evaluation of satellite precipitation products for hydrological modeling in the brazilian cerrado biome. Water (Switzerland), 12(9). https://doi.org/10.3390/W12092571
  • 5. Azka M.A., Sugianto P.A., Silitonga A.K., Nugraheni I.R. 2018. Uji Akurasi Produk Estimasi Curah Hujan Satelit Gpm Imerg Di Surabaya, Indonesia. Jurnal Sains & Teknologi Modifikasi Cuaca, 19(2), 83. https://doi.org/10.29122/jstmc.v19i2.3153
  • 6. Behrangi A., Khakbaz B., Jaw T.C., AghaKouchak A., Hsu K., Sorooshian S. 2011. Hydrologic evaluation of satellite precipitation products over a midsize basin. Journal of Hydrology, 397(3–4), 225–237. https://doi.org/10.1016/j.jhydrol.2010.11.043
  • 7. Bergström S. 1976. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments. Smhi, RHO 7(November), 134.
  • 8. Bergström S. 1992. The HBV model - its structure and applications. Swedish Meteorological and Hydrological Institute, Norrköping, 4(4), 1–33.
  • 9. Bitew M.M., Gebremichael M. 2011. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences, 15(4), 1147– 1155. https://doi.org/10.5194/hess-15-1147-2011
  • 10. Booij M.J. 2003. Determination and integration of appropriate spatial scales for river basin modelling. Hydrological Processes, 17(13), 2581–2598. https://doi.org/10.1002/hyp.1268
  • 11. Braun J.N., Renner C.B. 1990. Application of a conceptual runoff model in different physiographic regions of Switzerland. Hydrological Sciences Journal, 37(3), 217–231. https://doi.org/10.1080/02626669209492583
  • 12. Cryer J.D., Chan K.-S. 2008. Time series analysis With Applications in R. Springer US.
  • 13. Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153
  • 14. Fujihara Y., Yamamoto Y., Tsujimoto Y., Sakagami J.-I. 2014. Discharge Simulation in a Data-Scarce Basin Using Reanalysis and Global Precipitation Data: A Case Study of the White Volta Basin. Journal of Water Resource and Protection, 6(14), 1316–1325. https://doi.org/10.4236/jwarp.2014.614121
  • 15. Gilewski P., Nawalany M. 2018. Inter-comparison of Rain-Gauge, Radar, and Satellite (IMERG GPM) precipitation estimates performance for rainfallrunoff modeling in a mountainous catchment in Poland. Water (Switzerland), 10(11), 1–23. https://doi.org/10.3390/w10111665
  • 16. Gu H., Yu Z., Yang C., Ju Q. 2010. Hydrological assessment of TRMM rainfall data over Yangtze River Basin. Water Science and Engineering, 3(4), 418–430. https://doi.org/10.3882/j.issn.1674-2370.2010.04.005
  • 17. Gupta H.V., Sorooshian S., Yapo P.O. 1999. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. Journal of Hydrologic Engineering, 4(2), 135–143. https://doi.org/10.1061/(asce)1084-0699(1999)4:2(135)
  • 18. Guse B., Kiesel J., Pfannerstill M., Fohrer N. 2020. Assessing parameter identifiability for multiple performance criteria to constrain model parameters. Hydrol. Sci. J., 65(7), 1158–1172. https://doi.org/10.1080/02626667.2020.1734204.
  • 19. Hidayati F., Hidayah E., Halik G. 2020. Prediksi Curah Hujan Dengan Pemodelan Jaringan Syaraf Tiruan Di Das Mayang Kabupaten Jembers. Pertemuan Ilmiah Tahunan HATHI Ke-37, Nov., 1–12
  • 20. Huang Y., Bárdossy A., Zhang K. 2018. Sensitivity of hydrological model to the temporal and spatial resolutions of rainfall input. Hydrology and Earth System Sciences Discussions, 2008, 1–34. https://doi.org/10.5194/hess-2018-469
  • 21. Huffman G.J., Adler R.F., Bolvin D.T., Gu G., Nelkin E.J., Bowman K.P., Hong Y., Stocker E.F., Wolff D.B. 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55. https://doi.org/10.1175/JHM560.1
  • 22. Indarto, Wahyuningsih S., Pudjojono M., Ahmad H., Ahmad Y. 2014. Studi Pendahuluan tentang Penerapan Metode Ambang Bertingkat untuk Analisis Kekeringan Hidrologi pada 15 DAS di Wilayah Jawa Timur. Jurnal Agroteknologi, 8(2), 112–121.
  • 23. Khalili K., Ahmadi F., Dinpashoh Y., Fard A.F. 2013. Determination of Climate Changes on Streamflow Process in the West of Lake Urmia with Used to Trend and Stationarity Analysis. International Journal of Advanced Biological and Biomedical Research, 1(10), 1220–1235. http://www.ijabbr.com
  • 24. Koutsouris A.J., Chen D., Lyon S.W. 2016. Comparing global precipitation data sets in eastern Africa: A case study of Kilombero Valley, Tanzania. International Journal of Climatology, 36(4), 2000–2014. https://doi.org/10.1002/joc.4476
  • 25. Lakew H.B., Moges S.A., Asfaw D.H. 2020. Hydrological performance evaluation of multiple satellite precipitation products in the upper Blue Nile basin, Ethiopia. Journal of Hydrology: Regional Studies, 27(August 2018), 100664. https://doi.org/10.1016/j.ejrh.2020.100664
  • 26. Linde A.T.E., Hurkmans R., Aerts J. 2007. Comparing model performance of the HBV and VIC models in the Rhine basin. July, 278–285.
  • 27. Lindström G., Johansson B., Persson M., Gardelin M., Bergström S. 1997. Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201(1–4), 272–288. https://doi.org/10.1016/S0022-1694(97)00041-3
  • 28. Liu Z. 2014. Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmospheric Research, 153(October), 119–133. https://doi.org/10.1016/j.atmosres.2014.07.032
  • 29. Mamenun M., Pawitan H., Sopaheluwakan A. 2014. Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia. Jurnal Meteorologi Dan Geofisika, 15(1). https://doi.org/10.31172/jmg.v15i1.169
  • 30. Mendez M., Calvo-Valverde L. 2016. Development of the HBV-TEC Hydrological Model. Procedia Engineering, 154, 1116–1123. https://doi.org/10.1016/j.proeng.2016.07.521
  • 31. Nash J.E., Sutcliffe J.V. 1970. River Flow Forecasting Through Conceptual Model Part I – A Discussion of Principles.
  • 32. Osuch M., Romanowicz R.J., Booij M.J. 2015. Influence de l’incertitude paramétrique sur les relations entre les paramètres du modèle par le VHB et les caractéristiques climatiques. Hydrological Sciences Journal, 60(7–8), 1299–1316. https://doi.org/10.1080/02626667.2014.967694
  • 33. Poméon T., Jackisch D., Diekkrüger B. 2017. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. Journal of Hydrology, 547, 222–235. https://doi.org/10.1016/j.jhydrol.2017.01.055
  • 34. Rusli S.R., Yudianto D., Liu J. 2015. Effects of temporal variability on HBV model calibration. Water Science and Engineering, 8(4), 291–300. https://doi.org/10.1016/j.wse.2015.12.002
  • 35. Rutkowska A., Ptak M. 2012. On Certain Stationarity Tests for Hydrologic Series. Studia Geotechnica et Mechanica, 34(1), 51–63. https://doi.org/10.1515/sgem-2017-0022
  • 36. Said S.E., Dickey D.A. 1984. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607. https://doi.org/10.1093/biomet/71.3.599
  • 37. Seibert J. 2005. HBV light. HBV Light Version 2 User’s Manual, November.
  • 38. Seibert J., Vis M.J.P. 2012. Teaching hydrological modeling with a user-friendly catchment-runoffmodel software package. Hydrology and Earth System Sciences, 16(9), 3315–3325. https://doi.org/10.5194/hess-16-3315-2012
  • 39. Tajudin N., Ya’acob N., Ali D.M., Adnan N.A. 2020. Estimation of TRMM rainfall for landslide occurrences based on rainfall threshold analysis. International Journal of Electrical and Computer Engineering, 10(3), 3208–3215. https://doi.org/10.11591/ijece.v10i3.pp3208-3215
  • 40. Thiemig V., Rojas R., Zambrano-Bigiarini M., De Roo A. 2013. Hydrological evaluation of satellitebased rainfall estimates over the Volta and BaroAkobo Basin. Journal of Hydrology, 499, 324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012
  • 41. Wang J., Wang H.J., Hong Y. 2016. Comparison of satellite-estimated and model-forecasted rainfall data during a deadly debris-flow event in Zhouqu, Northwest China. Atmospheric and Oceanic Science Letters, 9(2), 139–145. https://doi.org/10.1080/16742834.2016.1142825
  • 42.Wei W.W.S. 2006. Time Series Analysis: Univariate and Multivariate Methods. In Technometrics, 33(1). https://doi.org/10.1080/00401706.1991.10484777
  • 43. Worqlul A.W., Collick A.S., Tilahun S.A., Langan S., Rientjes T.H.M. 2015. Comparing TRMM 3B42, CFSR and ground-based rainfall estimates as input for hydrological models, in data scarce regions: the Upper Blue Nile Basin, 2081–2112. https://doi.org/10.5194/hessd-12-2081-2015
  • 44. Xuan W., Fu Q., Qin G., Zhu C., Pan S., Xu Y.P. 2018. Hydrological simulation and runoff component analysis over a cold mountainous River Basin in Southwest China. Water (Switzerland), 10(11). https://doi.org/10.3390/w10111705
  • 45. Zhang Z., Tian J., Huang Y., Chen X., Chen S., Duan Z. 2019. Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China. Remote Sensing, 11(4), 1–20. https://doi.org/10.3390/rs11040431
  • 46. Zhao Y., Xie Q., Lu Y., Hu B. 2017. Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China. Scientific Reports, 7(1), 1–10. https://doi.org/10.1038/s41598-017-02704-1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d577c916-5bc4-4b45-937c-4cbef7f3976d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.