PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exposures from radon, thoron, and thoron progeny in high background radiation area in Takandeang, Mamuju, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
The exposure from radon, thoron, and thoron progeny was measured for 45 dwellings in high background radiation area in Takandeang, Indonesia with ambient dose equivalent rate ranging from 0.34 µSv•h-1 to 1.90 µSv•h-1 . The measurement was taken using passive radon and thoron discriminative detector and thoron progeny detector. This measurement was taken from November 2018 to October 2019, and within one month the detector would be replaced with a new detector. The concentrations of radon, thoron, and thoron progeny were calculated as 42–490 Bqm−3 , 20–618 Bqm−3 , and 4–40 Bqm−3 , respectively. The concentrations for outdoor were 49–435 Bqm−3 , 23–457 Bqm−3 , and 4–37 Bqm−3 , respectively, and the annual effective dose was 9.8–28.6 mSv•y-1 . Based on the result of Spearman’s correlations analysis between the indoor radon and thoron concentrations and between the indoor thoron progeny and thoron concentrations, we suggest that exposure to thoron cannot be predicted from exposure to radon, and the equilibrium equivalent thoron concentration has a large uncertainty when it is estimated from thoron concentration assuming a single thoron equilibrium factor.
Słowa kluczowe
Czasopismo
Rocznik
Strony
89--94
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
  • Graduate School of Health Sciences, Hirosaki University 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan
  • Center for Nuclear Minerals Technology – National Nuclear Energy Agency of Indonesia Jl. Ps. Jumat, Lebak Bulus Raya No. 9, Cilandak, Jakarta, Selatan 12440, Indonesia
  • Center for Technology of Radiation Safety and Metrology National Nuclear Energy Agency of Indonesia Jl. Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
autor
  • Center for Nuclear Minerals Technology – National Nuclear Energy Agency of Indonesia Jl. Ps. Jumat, Lebak Bulus Raya No. 9, Cilandak, Jakarta, Selatan 12440, Indonesia
  • Center for Nuclear Minerals Technology – National Nuclear Energy Agency of Indonesia Jl. Ps. Jumat, Lebak Bulus Raya No. 9, Cilandak, Jakarta, Selatan 12440, Indonesia
  • Center for Nuclear Minerals Technology – National Nuclear Energy Agency of Indonesia Jl. Ps. Jumat, Lebak Bulus Raya No. 9, Cilandak, Jakarta, Selatan 12440, Indonesia
  • Center for Nuclear Minerals Technology – National Nuclear Energy Agency of Indonesia Jl. Ps. Jumat, Lebak Bulus Raya No. 9, Cilandak, Jakarta, Selatan 12440, Indonesia
  • Graduate School of Health Sciences, Hirosaki University 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan
  • Institute of Radiation Emergency Medicine Hirosaki University 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan
  • Institute of Radiation Emergency Medicine Hirosaki University 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan
Bibliografia
  • 1. Katherem, R. L. (1998). NORM sources and their origins. Appl. Radiat. Isot., 49, 149–168. DOI: 10.1016/s0969-8043(97)00237-6.
  • 2. Klement, A. W. (1982). Natural sources of environmental radiation. Florida: CRC Press.
  • 3. Syaeful, H., Sukadana, I. G., & Sumaryanto, A.(2014). Radiometric mapping for naturally occurring radioactive materials (NORM) assessment in Mamuju, West Sulawesi. Atom Indonesia, 40(1), 33–39. DOI: 10.17146/aij.2014.263.
  • 4. Omori, Y., Janik, M., Sorimachi, A., Ishikawa, T., & Tokonami, S. (2012). Effects of air exchange property of passive-type radon–thoron discriminative detectors on performance of radon and thoron measurements. Radiat. Prot. Dosim., 152(1/3), 140–145. DOI: 10.1093/rpd/ncs210.
  • 5. Zhuo, W., & Iida, T. (2000). Estimation of thoron progeny in dwellings with their deposition rate measurements. J. Health Phys., 35, 365–370. DOI: 10.5453/jhps.35.365.
  • 6. Hosoda, M., Kudo, H., Iwaoka, K., Yamada, R., Suzuki, T., Tamakuma, Y., & Tokonami, S. (2017).Characteristic of thoron (220Rn) in environment. Appl. Radiat. Isot., 120, 7–10. DOI: 10.1016/j.apradiso.2016.11.014.
  • 7. International Organization for Standardization.(2014). Measurement of radioactivity in the environment-Air-Radon 220: Integrated measurement methods for the determination of the average activity concentration using passive solid-state nuclear track detectors. ISO 16641:2014(E). Switzerland.
  • 8. Ngoa Engola L., Ndjana Nkoulou, J. E., Hosoda, M.,Bongue, D., Saïdou, , Akata, N., Koukong Heya, R., Kwato Njock, M. G., & Tokonami, S. (2018). Air absorbed dose rate measurements and external dose assessment by car-borne survey in the gold mining areas of Betare-Oya, Eastern-Cameroon. J. Health Phys., 53(1), 200–209. DOI: 10.5453/jhps.53.5.
  • 9. International Commission on Radiological Protection(2017). Occupational intakes of radionuclides: Part 3.(ICRP Publication 137). Ann. ICRP, 46(3/4).
  • 10. Suzuki, G., Yamaguchi, I., Ogata, H., Sugiyama, H., Yonehara, H., Kasagi, F., & Kimura, S. (2010). A nation-wide survey on indoor radon from 2007 to 2010 in Japan. 2010. J. Radiat. Res., 51(6), 683–689.DOI: 10.1269/jrr.10083.
  • 11. Yamasaki, T., Guo, Q., & Iida, T. (1995). Distributions of thoron progeny concentrations in dwellings. Radiat. Prot. Dosim., 59(2), 135–140. DOI: 10.1093/oxfordjournals.rpd. a082644.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5777962-1c47-4e4b-942c-be12d61cad68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.