PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of Temperature and Reaction Time on the Efficiency of Alkaline Pretreatment of Hay Biomass

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low biodegradability caused by polymeric structure is the main barrier in the use of lignocellulosic materials in biofuels production by using biological methods. Pretreatment of the biomass is the way to improve the suitability of hardly biodegradable biomass for biogas or bioethanol production. Evaluation of the influence of thermal and thermochemical alkaline pretreatment on the efficiency of hydrolysis of hay (mixture of various grass species) was the aim of the study. The batch scale experiment was carried out with the use of NaOH and distilled water as solvents, and the changes in pretreatment time (2, 4 and 8 hours) and temperature (22 and 80°C) were also considered. The efficiency of biomass solubilisation was assessed based on the results obtained from the measurements of chemical oxygen demand (COD) and volatile fatty acids (VFA) concentration in the hydrolysates. The solubility of the biomass, expressed as a percentage of soluble COD in total COD, was calculated. The experiment showed that the highest solubilisation of hay biomass was observed at 80°C under alkaline conditions. In this case, the solubility of the COD was 3-times higher, and the VFA concentration in hydrolysates was 4-times higher in comparison to the distilled water-based test at 22°C. It was noted that time of the process significantly influenced the efficiency of biomass solubilisation only during the experiment carried out at 22°C. Extension of hydrolysis time from 2 to 8 hours increased the value of soluble COD of 70% and 55% for water and alkaline solvent, respectively. The process conducted at 80°C was not time-dependent over the considered period.
Rocznik
Strony
120--127
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Agu O.S., Tabil L.G., Dumonceaux T. 2017. Microwave-assisted alkali pretreatment, densification and enzymatic saccharification of canola straw and oat hull. Bioengineering, 4(25), 1–33.
  • 2. Appels L., Degrève J., Van der Bruggen Van Impe B.J., Dewil R. 2010. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource Technology, 101(15), 5743–5748.
  • 3. Arıcı Ş., Ersöz Ö., Gül Bayrakcı A., Eryaşar A., Koçar G. 2015. Influence of thermal and alkali pretreatment to solubilisation and biomethane production of garden waste. International Journal of Global Warming, 7(2), 242–255
  • 4. Cabrera E., Muñoz M.J., Martín R., Caro I., Curbelo C., Díaz A.B. 2014. Alkaline and alkaline peroxide pretreatments at mild temperature to enhance enzymatic hydrolysis of rice hulls and straw. Bioresource Technology, 167, 1–7.
  • 5. Chen Y., Stevens M.A., Zhu Y., Holmes J., Xu H. 2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels, 6(1):8.
  • 6. Dąbkowska K. 2017. Alkaliczna obróbka wstępna lignocelulozowych odpadów kukurydzianych. Inżynieria i Aparatura Chemiczna, 56(3), 66–67.
  • 7. Fan L.T., Gharpuray M.M., Lee Y.-H., Cellulose Hydrolysis, Biotechnology Monographs; Springer: Berlin; Vol. 3, 1987.
  • 8. Hu Z., Wen Z. 2008. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 38, 369–378.
  • 9. Jackowiak D., Bassard D., Pauss A., Ribeiro T. 2011. Optimisation of a microwave pretreatment of wheat straw for methane production. Bioresource Technology, 102, 6750–6756.
  • 10. Kaar W.E., Holtzapple M.T. 2000. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18, 189–199.
  • 11. Keshwani D.R., Cheng J.J., Burns J.C., Li L., Chiang V., Microwave pretreatment of switchgrass to enhance enzymatic hydrolysis. In: Proceedings of the ASABE Annual International Meeting; 17–20 June 2007; Minneapolis, Minnesota. St. Joseph, MI: ASABE; 2007. Paper No. 077127, 1–8.
  • 12. Kim I., Han J. 2012. Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass and Bioenergy, 46, 210–217.
  • 13. Kim J.S., Lee Y.Y., Kim T.H. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, 199, 42–48.
  • 14. Kim T.H., 2013, Pretreatment of lignocellulosic biomass. In: Yang, S.T., El-Enshasy, H.A., Thongchul, N., Martin, Y. (Eds.), Bioprocessing Technologies in Integrated Biorefinery for Production of Biofuels, Biochemicals, and Biopolymers from Biomass. Wiley, New York, USA, 91–109.
  • 15. Kumar R., Wyman C.E. 2009. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 25, 302–314.
  • 16. Li Y., Park S.Y., Zhu J. 1985. Solid-state anaerobic digestion for methane production from organic waste. Biotechnology and Bioengineering, 27(3), 334–344.
  • 17. Liew L.N., Shi J., Li Y. 2011. Enhancing the solidstate anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresource Technology, 102(19), 8828–8834.
  • 18. Liu X., Wang W., Gao X., Zhou Y., Shen R. 2012. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 32(2), 249–255.
  • 19. Pedersen M., Viksø-Nielsen A., Meyer A.S. 2010. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochemistry, 45(7), 1181–1186.
  • 20. Prior B.A., Day D.F. 2008. Hydrolysis of ammonia-pretreated sugar cane bagasse with cellulase, β-Glucosidase, and hemicellulase preparations. Applied Biochemistry and Biotechnology, 146, 151–164.
  • 21. Rodrigues C.I.S., Jackson J.J., Montross M.D. 2016. A molar basis comparison of calcium hydroxide, sodium hydroxide, and potassium hydroxide on the pretreatment of switchgrass and miscanthus under high solids conditions. Industrial Crops and Products, 92, 165–173.
  • 22. Sharma R., Palled V., Sharma-Shivappa R.R., Osborne J. 2013. Potential of potassium hydroxide pretreatment of switchgrass for fermentable sugar production. Applied Biochemistry and Biotechnology, 169, 761–772.
  • 23. Sun R., Lawther J.M., Banks W.B. 1995. Influence of alkaline pre-treatments on the cell wall components wheat straw. Industrial Crops and Products, 4, 127–145.
  • 24. Taherzadeh M.J., Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9(9), 1621–1651.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d574730f-4221-40cc-8dd4-4bdc8cdd8953
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.