PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, the effect of graphene oxide nanosheets (GO) on the geotechnical properties of cemented soil was investigated. Various concentrations of GO (0.02, 0.05 and 0.1 wt% of cement) were added to the soil to evaluate the influence of GO on the soil's compaction characteristics, consistency limits, unconfined compression strength (UCS) and direct shear parameters. The scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) analysis were used to characterize the structure of synthesized GO and stabilized soil samples. The addition of GO decreased the plasticity and compressibility parameters of the treated soil samples. The tensile and the shear strength of the treated soil samples were increased with an increase in the GO concentration. The unconfined compressive strength was increased as the GO content increased in the cemented soil samples. The obtained results showed that the GO as a stabilizing agent has a considerable influence on the mechanical properties of stabilized soil.
Rocznik
Strony
695--701
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, Electronic Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
  • Department of Civil Engineering, University Technology Malaysia, Johor Bahru, Malaysia
Bibliografia
  • [1] E.A. Basha, R. Hashim, H.B. Mahmud, A.S. Muntohar, Stabilization of residual soil with rice husk ash and cement, Construction and Building Materials 19 (2005) 448–453.
  • [2] P.T. Sherwood, Soil Stabilization with Cement and Lime. State of the Art Review, Transport Research Laboratory, HSMO, London, 1993.
  • [3] D.T. Bergado, L.R. Anderson, N. Miura, A.S. Balasubramaniam, Soft Ground Improvement in Lowland and Other Environments, ASCE Press, New York, 1996.
  • [4] S. Kazemian, B.B.K. Huat, Assessment and comparison of grouting and injection methods in geotechnical engineering, European Journal of Scientific Research 27 (2009) 234–247.
  • [5] Z.H. Majeed, M.R. Taha, A review of stabilization of soils by using nanomaterials, Australian Journal of Basic and Applied Sciences 7 (2013) 576–581.
  • [6] B.K.G. Theng, Clay–polymer interactions. Summary and perspectives, Clays and Clay Minerals 30 (1982) 1–10.
  • [7] D. Dermatas, X.G. Meng, Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils, Journal of Engineering Geology 70 (2003) 77–394.
  • [8] T.B. Edil, D.A. Staab, Practitioner's Guide for Deep-Mixed Stabilization of Organic Soils and Peat, Final Report, The National Deep Mixing Research Program, Project Number NDM302, 2005.
  • [9] K.M.A. Hossain, M. Lachemi, S. Easa, Stabilized soils for construction applications incorporating natural resources of Papua New Guinea, Resources, Conservation and Recycling 51 (2007) 711–731.
  • [10] W. Kuo, K. Lin, W. Chang, H. Luo, Effects of nano-materials on properties of waterworks sludge ash cement paste, Journal of Industrial and Engineering Chemistry 12 (2006) 702.
  • [11] L. Senff, J.A. Labrincha, V.M. Ferreira, D. Hotza, W.L. Repette, Effect of nano-silica on rheology and fresh properties of cement pastes and mortars, Construction and Building Materials 23 (2009) 2487–2491.
  • [12] S.H. Bahmani, B.B.K. Huat, A. Asadi, N. Farzadnia, Stabilization of residual soil using SiO2 nanoparticles and cement, Construction and Building Materials 64 (2014) 350–359.
  • [13] K. Sobolev, I. Flores, R. Hermosillo, L.M. Torres-Martinez, Nanomaterials and nanotechnology for high-performance cement composites, in: Proceedings of ACI Session on Nanotechnology of Concrete: Recent Developments and Future Perspectives, Denver, USA, 2006.
  • [14] N. Farzadnia, A. Ali, R. Demirboga, Development of nanotechnology in high performance concrete, Advances in Materials Research 364 (2012) 115–118.
  • [15] M. Stefanidou, I. Papayianni, Influence of nano-SiO2 on the Portland cement pastes, Composites Part B: Engineering 43 (2012) 2706–2710.
  • [16] D.T.R. Figueiredo, A.A.S. Correia, D. Hunkeler, M.G.B.V. Rasteiro, Surfactants for dispersion of carbon nanotubes applied in soil stabilization, Colloids and Surfaces A: Physicochemical and Engineering Aspects (2015), http://dx. doi.org/10.1016/j.colsurfa.2014.12.027.
  • [17] A. Porbaha, State of the art in deep mixing technology. Part I. Basic concept sand overview, Ground Improvement 2 (1998) 81–92.
  • [18] J.M. Makar, G.W. Chan, Growth of cement hydration products on single-walled carbon nanotubes, Journal of the American Ceramic Society 92 (2009) 1303–1310.
  • [19] L. Raki, J. Beaudoin, R. Alizadeh, J. Makar, T. Sato, Cement and concrete nanoscience and nanotechnology, Materials 3 (2010) 918–942.
  • [20] A. Cwirzen, K. Habermehl-Cwirzen, V. Penttala, Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites, Advances in Cement Research 20 (2008) 65–73.
  • [21] A. Mohammed, J.G. Sanjayan, W.H. Duan, A. Nazari, Incorporating graphene oxide in cement composites: a study of transport properties, Construction and Building Materials 84 (2015) 341–347.
  • [22] S. Chuah, Z. Pan, J.G. Sanjayan, C.M. Wang, W.H. Duan, Nano reinforced cement and concrete composites and new perspective from graphene oxide, Construction and Building Materials 73 (2014) 113–124.
  • [23] S. Lv, Y. Ma, C. Qiu, T. Sun, J. Liu, Q. Zhou, Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites, Construction and Building Materials 49 (2013) 121–127.
  • [24] D.R. Dreyer, S. Park, R.S. Ruoff, et al., The chemistry of graphene oxide, Chemical Society Reviews 39 (2010) 228–240.
  • [25] J. Paredes, S. Villar-Rodil, A. Martinez-Alonso, J. Tascon, Graphene oxide dispersions in organic solvents, Langmuir 24 (2008) 10560–10564.
  • [26] M. Saafi, L. Tang, J. Fung, M. Rahman, J. Liggat, Enhanced properties of graphene/fly ash geopolymeric composite cement, Cement and Concrete Research 67 (2015) 292–299.
  • [27] E. Horszczaruk, E. Mijowska, R.J. Kalenczuk, M. Aleksandrzak, S. Mijowska, Nanocomposite of cement/graphene oxide – Impact on hydration kinetics and Young's modulus, Construction and Building Materials 78 (2015) 234–242.
  • [28] Z. Pan, L. He, L. Qiu, A.H. Korayem, G. Li, J.W. Zhu, F. Collins, D. Li, W.H. Duan, M.C. Wang, Mechanical properties and microstructure of a graphene oxide–cement composite, Cement and Concrete Composites 58 (2015) 140–147.
  • [29] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80 (1958) 1339.
  • [30] ASTM, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, D698, West Conshohocken, PA, 2000.
  • [31] ASTM., Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, D2166, West Conshohocken, PA, 2000.
  • [32] ASTM, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, D3080, West Conshohocken, PA, 2000.
  • [33] W.R. Azzam, Behavior of modified clay microstructure using polymer nanocomposites technique, Alexandria Engineering Journal 53 (2014) 143–150.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5746a4b-d46a-4975-9d96-c99a7e540450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.