PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaching kinetics of copper from chalcopyrite concentrate in nitrous-sulfuric acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Treating chalcopyrite flotation concentrates by hydrometallurgical techniques seems to be the most convenient method for leaching copper due to concerns over air pollution and regulations regarding the emission of sulfur dioxide that result from smelting. In this study, the leaching recovery-time trajectories of bulk chalcopyrite concentrate obtained from a flotation plant in the Kastamonu region of Turkey are presented. The effects of various parameters were elucidated in the nitrous-sulfuric acid electrolyte (CNaNO2:0.05 M–0.15 M, CH2SO4:1 M) at a moderate temperature (80–120 °C). A high level of copper recovery (98%) from bulk chalcopyrite concentrate was obtained under a total pressure of 6 atm at 120°C within 2 h when using small amounts of nitrite species due to their autocatalytic behavior in acidic solutions. The kinetics were well correlated with the shrinking core model for the diffusion controlled mechanism with an apparent activation energy of 34.06 kJ·mol–1. Elemental sulfur was the primary leaching product on the mineral surface, as confirmed using XRD and SEM/EDX. The semi-empirical equation explaining the reaction rate under the present conditions was expressed as follows: ...[wzór].
Słowa kluczowe
Rocznik
Strony
399--413
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
autor
  • Mining Engineering Dept., Faculty of Engineering, Dokuz Eylul University, Izmir, 35160, Turkey
  • Department of Metallurgical and Materials Engineering, Colorado School of Mines, CO, 80401, USA
autor
  • Mining Engineering Dept., Faculty of Engineering, Dokuz Eylul University, Izmir, 35160, Turkey
autor
  • Mining Engineering Dept., Faculty of Engineering, Dokuz Eylul University, Izmir, 35160, Turkey
Bibliografia
  • 1. ACKERMAN J.B., ANDERSON C.G., NORDWICK S.M., KRYS L.E., 1993. Hydrometallurgy at the Sunshine Mine metallurgical complex. In: Hiskey B., Wadsworth M. (Eds.), Proceedings of AIME Meeting, Hydrometallurgy-Fundamentals, Technology and Innovations, Littleton, Colorado, 477–498.
  • 2. ANDERSON C.G., KRYS, L.E., HARRISON, K.D., 1992. Treatment of metal bearing mineral material. Chemical Abstract, US Patent No. 5096486.
  • 3. ANDERSON C.G., HARRISON K.D., KRYS L.E., 1993. Process Integration of sodium nitrite oxidation and fine grinding in refractory precious metal concentrate pressure leaching. In: Mishra R.K. (Ed.), Precious Metals, Allentown, Pennsylvania, 19-45.
  • 4. ANDERSON C.G., HARRISON K.D., KRYS L.E., 1996. Theoretical considerations of sodium nitrite oxidation and fine grinding in refractory precious metals concentrate pressure leaching. Minerals and Metallurgical Processing, AIME-SME, 4.
  • 5. ANDERSON C.G., 2003, Treatment of copper ores and concentrates with industrial nitrogen species catalyzed pressure leaching and non-cyanide precious metals recovery. J. Metals, 55, 32–36.
  • 6. AYDOGAN S., ARAS A., CAMBAZOGLU M., 2005, Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chem. Eng. J., 114, 67–72.
  • 7. AYDOGAN S., ARAS A., UCAR G., ERDEMOGLU M., 2007, Dissolution kinetics of galena in acetic acid solutions with hydrogen peroxide. Hydrometallurgy, 89, 189–195.
  • 8. AWAD H.H., STANBURY D.M., 1993, Autooxidation of NO in aqueous solution, Int. J. Chem. Kin., 25, 375–381.
  • 9. BABA A.A., ADEKOLA F.A., BALE, R.B., 2009, Study of dissolution kinetics of a Nigerian cassiterite ore by hydrochloric acid. Sci. Focus, 14 (2), 198–207.
  • 10. BABA A.A., ADEKOLA F.A., 2010, Hydrometallurgical processing of a Nigerian sphalerite in hydrochloric acid: characterization and dissolution kinetics. Hydrometallurgy, 101 (1–2), 69–75.
  • 11. BALDWIN S.A., VAN WEERT G.V., 1996, On the catalysis of ferrous sulphate oxidation in autoclaves by nitrates and nitrites. Hydrometallurgy, 42, 209–219.
  • 12. BEATTIE M.J.V., RANDSEPP R., ISMAY A., 1989. Arseno/Redox Process for Refractory Gold Ores. in: Dobby, G.S., Rao, S.R. (Eds.), Intern. Symp. Processing Complex Ores, Pergamon, Oxford, 431–439.
  • 13. BRENNECKE H.M., BERGMANN O., ELLEFSON R.R., DAVIES D.S., LEUDERS R.E., SPITZ R.A., 1981, Nitric-sulfuric leach process for recovery of copper from concentrate. J. Min. Eng., 12, 20–24.
  • 14. CALDON F., 1978. Treatment of metal bearing mineral material. Chemical Abstract, US Patent No. 4084961.
  • 15. CORRANS I.J., ANGOVE J.E., 1993. Activation of a Mineral Species, Chemical Abstract, US Patent No 232491.
  • 16. DIXON D.G., MAYNE D.D., BAXTER K.G., 2008, GalvanoxTM – a novel galvanically assisted atmospheric leaching technology for copper concentrate. Canadian Metallurgical Quarterly, 47, 327–336.
  • 17. DREISINGER D., ABED N.A., 2002, Fundamental study of the reductive leaching of chalcopyrite using metallic iron part I: Kinetic analysis. Hydrometallurgy, 66, 37.
  • 18. DREISINGER D., RICHMOND G., HESS F., LANCASTER T., 2002. The competitive position of the Mt. Gordon copper process in the copper industry. ALTA 2002 Copper 7 Forum. ALTA Metalurgical Services, Melbourne, 14.
  • 19. DREISINGER D.B., STEYL J.D.T., SOLE K.C., GNOINSKI J., DEMPSEY P., 2003. The Anglo American Corporation/University of British Columbia (AAC/UBC) chalcopyrite process: An integrated pilot–plant evaluation. in: Rivieros, A., Dixon, D.G., Dreisinger, D.B., Menacho, J. (Eds.), Copper 2003-Cobre 2003, Vol VI, Hydrometallurgy of copper, Montreal, 223–237.
  • 20. DUTRIZAC J.E., MACDONALD R.J.C., INGRAHAM T.R., 1969, The kinetics of dissolution of synthetic chalcopyrite in aqueous acidic ferric sulphate solutions. AIME, 245, 955–959.
  • 21. FERRON C.J., FLEMING C.A., O’KAN P.T., DREISINGER D.B., 2001, Application of the PLATSOL process for simultaneous dissolution of copper, nickel, gold, and PGMs from sulfide concentrates and autocatalysts. Precious Metals, 129–157.
  • 22. GOK O.S., 2009. On the role of low-concentration nitrite in oxidative-leaching with oxygen, PhD Thesis, Colorado School of Mines, CO, USA.
  • 23. GOK O., ANDERSON C.G., 2013, Dissolution of Low-Grade Chalcopyrite Concentrate in Acidified Nitrite Electrolyte, Hydrometallurgy, DOI No: 10.1016/j.hydromet.2013.01.021.
  • 24. HACKL R.P., DREISIGER D.B., PETERS E., KING J.A., 1995, Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy, 39, 25–48.
  • 25. HIRATO T., KİNOSHITA M., AWAKURA Y., MAJIMA H., 1986, The leaching of chalcopyrite with ferric chloride. Metallurgical Transactions B, Process Metallurgy, 17, 19–28.
  • 26. HIROYOSHI N., MIKI H., HIRAJIMA T., TSUNEKAWA M.A., 2000, Model for ferrous promoted chalcopyrite leaching. Hydrometallurgy, 57, 31–38.
  • 27. JACKSON E., 1982, Hydrometallurgical extraction and reclamation. Chichester: Ellis Horwood Ltd., 46-47.
  • 28. JONES D.L., 1996. CESL Copper Process. Alta Copper Hydrometallurgy Forum, Brisbane, Australia, 24.
  • 29. KAMEOKA Y., PIGFORD R.L., 1977, Adsorption of nitrogen dioxide into water, sulfuric acid, sodium hydroxide, and alkaline sodium sulfite aqueous solutions. Ind. Eng. Chem. Fundam., 16, 163–169.
  • 30. KOFLUK D.K., COLLINS M.J., 1998. Hydrometallurgical process for the extraction of copper from sulphidicconcentrates. Chemical Abstract, US Patent No. 5730776.
  • 31. LEVENSPIEL O., 1972. Chemical Reaction Engineering, 2nd ed., John Wiley & Sons, New York, 361–371.
  • 32. LINGE H.G., 1976. A study of chalcopyrite dissolution in acidic ferric nitrate by potentiometric titration. Hydrometallurgy, 2, 51–64.
  • 33. MARKOVITZ G.Y., SCHWARTZ S.E., NEWMAN L., 1981, Hydrolysis equilibrium of dinitrogen trioxide in dilute acid solution. Inorg. Chem., 20, 445–450.
  • 34. MARSDEN J.O., BREWER R.E., HAZEN N., 2003. Copper concentrate leaching developments by Phelps Dodge corporation, Young, C.A. (Ed.), Electrometallurgy and Environmental Hydrometallurgy, TMS, PA, 1429–1446.
  • 35. MAZET N., 1992, Modeling of gas–solid reactions. 1. Nonporous solids, Int Chem Eng, 32, 271–284.
  • 36. MILLER J.D., PORTILLO H.Q., 1979. Silver catalysis in ferric sulfate leaching of chalcopyrite. in: Laskowski, J. (Ed.), XIII International Min. Proc. Conf., Elsevier, Amsterdam, 851–901.
  • 37. MUNOZ P.B., MILLER J.D., WADSWORTH M.E., 1979, Reaction mechanism for the acid ferric sulfate leaching of chalcopyrite. Metallurgical Transactions B: Process Metallurgy, 10B, 149–158.
  • 38. OLANIPEKUN E.O., 1999, A kinetics study of the leaching of a Nigerian ilmenite ore by hydrochloric acid. Hydrometallurgy, 53, 1–10.
  • 39. PAPANGELAKIS V., 2005. Surface chemistry of molten sulfur on nickel sulfides. Pressure Oxidation-Modelling, Reactor Design, and Processes. Presentation to CSIRO Minerals Symposium, Perth, Australia, 14th April,
  • 40. PARK J.Y., LEE Y.N., 1988, Solubility and decomposition kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6302.
  • 41. STANELY R.W., SUBRAMANIAN K.N., 1977. Recovering copper from concentrates with insolubale sulfate forming leach. Chemical Abstract, US Patent No. 4039406.
  • 42. TSUCHIDA T., NARRITA E., TAKUECHI H., ADACHI M., OKABE T., 1982, Manufacture of high pure titanium (IV) oxide by the chloride process. I: Kinetic study on leaching of ilmenite ore in concentrated hydrochloric acid solution. Bull. Chem. Soc. Jpn., 55 (6), 1934–1938 (In: Olanipekun, E.O., 1999. Hydrometallurgy 53, 1–10).
  • 43. VAN WEERT G., FAIR K.J., SCHNEIDER J.C., 1986. The NITROX process for treating gold bearing arsenopyrite. In: 116th Annual TMS/AIME Meeting, CO.
  • 44. WANG S., 2005, Copper leaching from chalcopyrite concentrates. J. of Metals, 57, 48–51.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d56e1138-50ef-4713-b41e-a65a3f761996
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.