PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A script-driven approach to mapping satellite-derived topography and gravity data over the Zagros Fold-and-Thrust Belt, Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Integrated geophysical mapping benefits from visualizing multi-source datasets including gravity and satellite altimetry data using 2D and 3D techniques. Applying scripting cartographic approach by R language and GMT supported by traditional mapping in QGIS is presented in this paper with a case study of Iranian geomorphology and a special focus on Zagros Fold-and-Thrust Belt, a unique landform of the country affected by complex geodynamic structure. Several modules of GMT and ’tmap’ and ’raster’ packages of R language were shown to illustrate the efficiency of the console-based mapping by scripts. Data sources included high-resolution raster grids of GEBCO/SRTM, EGM-2008, SRTM DEM and vector geologic layers of USGS. The cartographic objective was to visualize thematic maps of Iran: topography, geology, satellite-derived gravity anomalies, geoid undulations and geomorphology. Various cartographic techniques were applied to plot the geophysical and topographic field gradients and categorical variations in geological structures and relief along the Zagros Fold-and-Thrust Belt. The structures of Elburz, Zagros, Kopet Dag and Makran slopes, Dasht-e Kavir, Dasht-e Lut and Great Salt Desert were visualized using 3D-and 2D techniques. The geomorphometric properties (slope, aspect, hillshade, elevations) were modelled by R. The study presented a series of 11 new maps made using a combination of scripting techniques and GIS for comparative geological-geophysical analysis. Listings of R and GMT scripting are provided for repeatability.
Słowa kluczowe
Rocznik
Strony
110--137
Opis fizyczny
Bibliogr. 112 poz., rys.
Twórcy
  • Universite Libre de Bruxelles, École polytechnique de Bruxelles, Brussels, Belgium
Bibliografia
  • Adams, A., Brazier, R., Nyblade, A., Rodgers, A. and AlAmri, A. (2009). Source parameters for moderate earthquakes in the Zagros mountains with implications for the depth extent of seismicity, Bulletin of the Seismological Society of America 99: 2044-2049. https://doi.org/10.1785/0120080314.
  • Afzal, P., Heidari, S. M., Ghaderi, M. and Yasrebi, A. B. (2017). Determination of mineralization stages using correlation between geochemical fractal modeling and geological data in Arabshah sedimentary rock-hosted epithermal gold deposit, NW Iran, Ore Geology Reviews 91: 278-295.
  • Ahmadhadi, F., Daniel, J., Azzizadeh, M. and Lacombe, O. (2008). Evidence for pre-folding vein development in the Oligo-Miocene Asmari Formation in the Central Zagros Fold Belt, Iran, Tectonics 27: TC1016. https://doi.org/10.1029/2006TC001978.
  • Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics 229: 211-238. https://doi.org/10.1016/0040-1951(94)90030-2.
  • Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its pro- foreland evolution, American Journal of Science 304: 1-20. https://doi.org/10.2475/ajs.304.1.1.
  • Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran, American Journal of Science 307: 1064-1095. https://doi.org/10.2475/09.2007.02.
  • Ali, S. A., Buckman, S., Aswad, K. J., Jones, B. G., Ismail, S. A. and Nutman, A. P. (2012). Recognition of late cretaceous hasanbag ophiolite-arc rocks in the Kurdistan region of the Iraqi zagros suture zone: a missing link in the paleogeography of the closing Neotethys ocean, Lithosphere 4: 395-410. https://doi.org/10.1130/L207.1.
  • Ali, S. A., Mohajjel, M., Aswad, K., Ismail, S., Buckman, S. and Jones, B. (2014). Tectono-stratigraphy and general structure of the northwestern Zagros collision zone across the Iraq-Iran border, Environmental Earth Sciences 4: 92-110.
  • Allen, M. B., Saville, C., Blanc, E. J., Talebian, M. and Nissen, E. (2013). Orogenic plateau growth: Expansion of the Turkish-Iranian Plateau across the Zagros fold-and-thrust belt, Tectonics 32: 171-190. https://doi.org/10.1002/tect.20025.
  • Amante, C. and Eakins, B. W. (2009). Etopo1 1 arc-minute global relief model: Procedures, data sources and analysis, NOAA Technical Memorandum, 19. https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.
  • Andreo, V., Dogliotti, A. I., Tauro, C. and Neteler, M. (2015). Spatio-temporal variations in chlorophyll-a concentration in the patagonic continental shelf: An example of satellite time series processing with GRASS GIS temporal modules, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2249-2252.
  • Aubourg, C., Smith, B., Bakhtari, H. R., Guya, N. and Eshraghi, A. (2008). Tertiary block rotations in the Fars Arc (Zagros, Iran), Geophysical Journal International 173: 659-673.
  • Authemayou, C., Chardon, D., Bellier, O., Malekzadeh, Z., Shabanian, E. and Abbassi, M. R. (2006). Late Cenozoic partitioning of oblique plate convergence in the Zagros fold-and-thrust belt (Iran), Tectonics 25: TC3002. https://doi.org/10.1029/2005TC001860.
  • Bahroudi, A. and Koyi, H. A. (2003). Effect of spatial distribution of Hormuz salt on deformation style in the Zagros fold and thrust belt: an analogue modelling approach, Journal of the Geological Society 160: 719-733. https://doi.org/10.1144/0016-764902-135.
  • Baikpour, S., Zulauf, G., Sebti, A., Kheirolahi, H. and Dietl, C. (2010). Analogue and geophysical modelling of the Garmsar Salt Nappe, Iran: constraints on the evolution of the Alborz Mountains, Geophysical Journal International 182: 599-612. https://doi.org/10.1111/j.1365-246X.2010.04656.x.
  • Bayer, R., Chery, J., Tatar, M., Vernant, P., Abbassi, M., Masson, F., Nilforoushan, F., Doerflinger, E., Regard, V. and Bellier, O. (2006). Active deformation in Zagros-Makran transition zone inferred from GPS measurements, Geophysical Journal International 165: 373-381. https://doi.org/10.1111/j.1365-246X.2006.02879.x.
  • Beaumont, P. (1972). Alluvial fans along the foothills of the Elburz Mountains, Iran, Palaeogeography, Palaeoclimatology, Palaeoecology 12(4): 251-273.
  • Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics 241: 193-224. https://doi.org/10.1016/0040-1951(94)00185-C.
  • Beydoun, Z. R., Hughes, M. W. and Stoneley, R. (1992). Petroleum in the zagros basin: a late tertiary foreland basin overprinted onto the outer edge of a vast hydrocarbon-rich paleozoic-mesozoic passive-margin shelf, in R. W. Macqueen and D. A. Leckie (eds), Foreland Basins and Fold Belts, Vol. 55, AAPG Memoir, pp. 309-340. https://doi.org/10.1306/M55563C12.
  • Blanc, E. P., Allen, M. B., Inger, S. and Hassani, H. (2003). Structural styles in the Zagros simple folded zone, Iran, Journal of the Geological Society 160: 401-412. https://doi.org/10.1144/0016-764902-110.
  • Bosold, A., Schwarzhans, W., Julapour, A., Ashrafzadeh, A. R. and Ehsani, S. M. (2005). The structural geology of the High Central Zagros revisited (Iran), Petroleum Geoscience 11: 225-238. https://doi.org/10.1144/1354-079304-646.
  • Burberry, C. M., Cosgrove, J. W. and Liu, J. G. (2010). A study of fold characteristics and deformation style using the evolution of the land surface: Zagros Simply Folded Belt. Iran, Geological Society, London Special Publications 330: 139-154. https://doi.org/10.1144/SP330.8.
  • Casciello, E., Vergés, J., Saura, E., Casini, G., Fernández, N., Blanc, E., Homke, S. and Hunt, D. W. (2009). Fold patterns and multilayer rheology of the Lurestan Province, Zagros simply folded belt (Iran), Journal of the Geological Society 166: 947-959. https://doi.org/10.1144/0016-76492008-138.
  • Cooper, M. (2007). Structural style and hydrocarbon prospectivity in fold and thrust belts: a global review, in A. C. Ries, R. W. Butler and R. H. Graham (eds), Deformation of the Continental Crust: The Legacy of Mike Coward. Special Publications, Vol. 272, London: Geological Society, London: UK, pp. 447-472. https://doi.org/10.1144/GSL.SP.2007.272.01.23.
  • De Sarkar, A., Biyahut, N., Kritika, S. and Singh, N. (2012). An environment monitoring interface using grass gis and python, 2012 Third International Conference on Emerging Applications of Information Technology, pp. 235-238.
  • Djamour, Y., Vernant, P., Bayer, R., Nankali, H. R., Ritz, J., Hinderer, J., Hatam, Y., Luck, B., Le Moigne, N., Sedighi, M. and Khorrami, F. (2010). GPS and gravity constraints on continental deformation in the Alborz mountain range, Iran, Geophysical Journal International 183: 1287-1301. https://doi.org/10.1111/j.1365-246X.2010.04811.x.
  • Ebi, N. B. (1995). Image interpretation of topographic maps on a medium scale via frame-based modelling, Proceedings, International Conference on Image Processing, Vol. 1, pp. 250-253.
  • Elyasi, S. (2016). Petroleum source-rock potential of the Piranj oil field, Zagros basin, Marine and Petroleum Geology pp. 448-454.
  • Eskandari, S. and Ali Mahmoudi Sarab, S. (2022). Mapping land cover and forest density in Zagros forests of Khuzestan province in Iran: A study based on Sentinel-2, Google Earth and field data, Ecological Informatics 70: 101727.
  • Farr, T. G. and Kobrick, M. (2000). Shuttle radar topography mission produces a wealth of data, Eos, Transactions American Geophysical Union 81(48): 583-585.
  • Garajeh, M. K., Feizizadeh, B., Blaschke, T. and Lakes, T. (2022). Detecting and mapping karst landforms using object-based image analysis: Case study: Takht-soleiman and parava mountains, iran, The Egyptian Journal of Remote Sensing and Space Science 25(2): 473-489.
  • GDAL/OGR (2021). Geospatial data abstraction software library, https://gdal.org. Open Source Geospatial Foundation.
  • GEBCO Compilation Group (2020). Gebco 2020 grid, Dataset. https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9.
  • Gedicke, S., Bonerath, A., Niedermann, B. and Haunert, J.-H. (2021). Zoomless Maps: External Labeling Methods for the Interactive Exploration of Dense Point Sets at a Fixed Map Scale, IEEE Transactions on Visualization and Computer Graphics 27(2): 1247-1256.
  • Gilliot, J.-M., Stamon, G. and Le Men, H. (1993). A knowledge-based system in image processing for communication networks study in aerial images a tool for cartography automation, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC, Vol. 2, pp. 77-82.
  • Heidari, S. M., Afzal, P., Ghaderi, M. and Sadeghi, B. (2021). Detection of mineralization stages using zonality and multifractal modeling based on geological and geochemical data in the Au-(Cu) intrusion-related Gouzal-Bolagh deposit, NW Iran, Ore Geology Reviews 139: 104561.
  • Hessami, K., Koyi, H. A., Talbot, C. J., Tabasi, H. and E., S. (2001). Progressive unconformities within an evolving foreland fold-thrust belt, Zagros Mountains, Journal of the Geological Society 158: 969-981. https://doi.org/10.1144/0016-764901-007.
  • Hijmans, R. J. and van Etten, J. (2012). raster: Geographic analysis and modeling with raster data, http://CRAN.R-project.org/package=raster. R package version 2.0-12.
  • Horn, B. (1981). Hill shading and the reflectance map, Proceedings of the IEEE 69(1): 14-47.
  • Hosseini, S. T., Asghari, O. and Emery, X. (2021). An enhanced direct sampling (DS) approach to model the geological domain with locally varying proportions: Application to Golgohar iron ore mine, Iran, Ore Geology Reviews 139: 104452.
  • Hrovat, A., Vilhar, A., Ozimek, I., Javornik, T. and Kočan, E. (2013). Grass-raplat - radio planning tool for grass gis system, ICECom 2013, pp. 1-5.
  • Huang, F., Liu, D., Liu, P., Wang, S., Zeng, Y., Li, G., Yu, W., Wang, J., Zhao, L. and Pang, L. (2007). Research on cluster-based parallel gis with the example of parallelization on grass gis, Sixth International Conference on Grid and Cooperative Computing (GCC 2007), pp. 642-649.
  • Jahani, S., Callot, J., Letouzey, J. and Frizon de Lamotte, D. (2009). The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and relationships between salt plugs, folding, and faulting, Tectonics 28: 1-22. https://doi.org/10.1029/2008TC002418.
  • Jiménez-Munt, I., Fernández, M., Saura, E., Vergés, J. and Garcia-Castellanos, D. (2012). 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia-Eurasia collision (Iran), Geophysical Journal International 190: 1311-1324. https://doi.org/10.1111/j.1365-246X.2012.05580.x.
  • Kasalica, V. and Lamprecht, A.-L. (2018). Automated composition of scientific workflows: A case study on geographic data manipulation, 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 362-363.
  • Kazemi, S., Lim, S. and Ge, L. (2005). Integration of cartographic knowledge with generalization algorithms, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05., Vol. 5, pp. 3502-3505.
  • Khodabakhshnezhad, A. and Arian, M. (2016). Salt Tectonics in the Southern Iran, International Journal of Geosciences 7: 367-377. https://doi.org/10.4236/ijg.2016.73029.
  • Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V. and Lemenkova, P. (2017). Land Planning as a Support for Sustainable Development Based on Tourism: A Case Study of Slovak Rural Region, Environmental Engineering and Management Journal 16(2): 449-458. https://doi.org/10.30638/eemj.2017.045.
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area, Open Geosciences 5: 28-42. https://doi.org/10.2478/s13533-012-0120-0.
  • Koshnaw, R. I., Stockli, D. F., Horton, B. K., Teixell, A., Barber, D. E. and Kendall, J. J. (2020). Late Miocene deformation kinematics along the NW Zagros fold-thrust belt, Kurdistan region of Iraq: Constraints from apatite (U-Th)/He thermochronometry and balanced cross sections, Tectonics 39: e2019TC005865. https://doi.org/10.1029/2019TC005865.
  • Lemenkov, V. and Lemenkova, P. (2021). Using TeX Markup Language for 3D and 2D Geological Plotting, Foundations of Computing and Decision Sciences 46: 43-69. https://doi.org/10.2478/fcds-2021-0004.
  • Lemenkova, P. (2019a). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis, GeoScience Engineering 65: 1-22. https://doi.org/10.35180/gse-2019-0020.
  • Lemenkova, P. (2019b). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language, Geodesy and Cartography 45: 57-84. https://doi.org/10.3846/gac.2019.3785.
  • Lemenkova, P. (2019c). Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean, Reports on Geodesy and Geoinformatics 108: 9-22. https://doi.org/10.2478/rgg-2019-0008.
  • Lemenkova, P. (2020a). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset, Geodesy and Cartography 46: 98-112. https://doi.org/10.3846/gac.2020.11524.
  • Lemenkova, P. (2020b). Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea, Annales Universitatis Mariae Curie-Sklodowska, sectio B - Geographia, Geologia, Mineralogia et Petrographia 75: 115-141. https://doi.org/10.17951/b.2020.75.115-141.
  • Lemenkova, P. (2020c). GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin, Geodetski List 74: 19-39. https://doi.org/10.5281/zenodo.3794155.
  • Lemenkova, P. (2020d). NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library, Geomatics and Environmental Engineering 14: 25-45. https://doi.org/10.7494/geom.2020.14.4.25.
  • Lemenkova, P. (2020e). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea, Geology, Geophysics and Environment 46: 205-222. https://doi.org/10.7494/geol.2020.46.3.205.
  • Lemenkova, P. (2020f). Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT, Bulletin of Geography. Physical Geography Series 18: 41–60. https://doi.org/10.2478/bgeo-2020-0004.
  • Lemenkova, P. (2021a). Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness, Czech Polar Reports 11: 67-85.
  • Lemenkova, P. (2021b). Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT, Kartografija i Geoinformacije 20: 16-37. https://doi.org/10.32909/kg.20.36.2.
  • Lemenkova, P. (2021c). Mapping topographic, geophysical and gravimetry data of Pakistan - a contribution to geological understanding of Sulaiman Fold Belt and Muslim Bagh Ophiolite Complex, Geophysica 56: 3-26. https://doi.org/10.5281/zenodo.5779189.
  • Lemenkova, P. (2021d). Submarine tectonic geomorphology of the Pliny and Hellenic Trenches reflecting geologic evolution of the southern Greece, Rudarsko Geolosko Naftni Zbornik 36: 33-48. https://doi.org/10.17794/rgn.2021.4.4.
  • Lemenkova, P. (2021e). Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean, Baltica 34: 27-46. https://doi.org/10.5200/baltica.2021.1.3.
  • Lemenkova, P. (2021f). Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean, Miscellanea Geographica 25: 213-225. https://doi.org/10.2478/mgrsd-2020-0038.
  • Lemenkova, P. (2022a). Console-Based Mapping of Mongolia Using GMT Cartographic Scripting Toolset for Processing TerraClimate Data, Geosciences 12: 140.
  • Lemenkova, P. (2022b). Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts, Data 7: 74.
  • Lemenkova, P. (2022c). Mapping submarine geomorphology of the Philippine and Mariana trenches by an automated approach using GMT scripts, Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 76: 258-266.
  • Lemenkova, P. (2022d). Seismicity in the Afar Depression and Great Rift Valley, Ethiopia, Environmental Research, Engineering and Management 78: 83-96.
  • Lemenkova, P. (2022e). Tanzania Craton, Serengeti Plain and Eastern Rift Valley: mapping of geospatial data by scripting techniques, Estonian Journal of Earth Sciences 71: 61-79.
  • Lindh, P. and Lemenkova, P. (2021a). Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments, Acta Mechanica et Automatica 15: 236-248. https://doi.org/10.2478/ama-2021-0030.
  • Lindh, P. and Lemenkova, P. (2021b). Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag-Cement Sediments, Nordic Concrete Research 65: 39-62. https://doi.org/10.2478/ncr-2021-0012.
  • Lindh, P. and Lemenkova, P. (2022a). Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden, Baltica 35: 47-59.
  • Lindh, P. and Lemenkova, P. (2022b). Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå, Bulletin of the Polish Academy of Sciences: Technical Sciences 70: 1-9.
  • Lindh, P. and Lemenkova, P. (2022c). Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden, Gospodarka Surowcami Mineralnymi - Mineral Resources Management 38: 147-168.
  • Liu, X., Wen, Z., Wang, Z., Song, C. and He, Z. (2018). Structural characteristics and main controlling factors on petroleum accumulation in Zagros Basin, Middle East, Journal of Natural Gas Geoscience 3(5): 273-281.
  • Lopez-Ornelas, E. and Sedes, F. (2008). Cartographic elements extraction using high resolution remote sensing imagery and xml modeling, IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, pp. II-430-II-432.
  • Mafi-Gholami, D., Zenner, E. K. and Jaafari, A. (2022). Mapping recent (1997-2017) and future (2030) county-level social vulnerability to socio-economic conditions and natural hazards throughout iran, Journal of Cleaner Production 355: 131841.
  • Masson, F., Anvari, M., Djamour, Y., Walpersdorf, A., Tavakoli, F., Daignieres, M., Nankali, H. and Van Gorp, S. (2007). Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: new insight for the present-day deformation pattern within NE Iran, Geophysical Journal International 170: 436-440. https://doi.org/10.1111/j.1365-246X.2007.03477.x.
  • Masson, F., Chéry, J., Hatzfeld, D., Martinod, J., Vernant, P., Tavakoli, F. and Ghafory-Ashtiani, M. (2005). Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data, Geophysical Journal International 160: 217-226. https://doi.org/10.1111/j.1365-246X.2004.02465.x.
  • Mokhtari, Z. and Sadeghi, B. (2021). Geochemical anomaly definition using multifractal modeling, validated by geological field observations: Siah jangal area, se iran, Geochemistry 81(4): 125774. Mineral exploration: a journey from fieldwork, to laboratory work, computational modelling and mineral processing.
  • Mostafa Mousavi, S., Ataie-Ashtiani, B. and Mossa Hosseini, S. (2022). Comparison of statistical and mcdm approaches for flood susceptibility mapping in northern iran, Journal of Hydrology p. 128072.
  • Motaghi, K., Shabanian, E. and Kalvandi, F. (2017). Underplating along the northern portion of the Zagros suture zone, Iran, Geophysical Journal International 210: 375-389. https://doi.org/10.1093/gji/ggx168.
  • Motaghi, K., Shabanian, E., Tatar, M., Cuffaro, M. and Doglioni, C. (2017). The south Zagros suture zone in teleseismic images, Tectonophysics 694: 292-301. https://doi.org/10.1016/j.tecto.2016.11.012.
  • Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T. and Kargar, S. (2007). Tertiary sequence of deformation in a thin-skinned/thick-skinned collision belt: the Zagros Folded Belt (Fars, Iran), Tectonics 26: TC5006. https://doi.org/10.1029/2007TC002098.
  • Nissen, E., Tatar, M., Jackson, J. A. and Allen, M. B. (2011). New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran, Geophysical Journal International 186: 928-944. https://doi.org/10.1111/j.1365-246X.2011.05119.x.
  • Palano, M., Imprescia, P., Agnon, A. and Gresta, S. (2018). An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt, Geophysical Journal International 213: 194-209. https://doi.org/10.1093/gji/ggx524.
  • Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J. and M., M. (2006). Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran), Geophysical Journal International 166: 227-237. https://doi.org/10.1111/j.1365-246X.2006.02920.x.
  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C. and Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research 117: B04406. https://doi.org/10.1029/2011JB008916.
  • R Core Team (2020). R: A language and environment for statistical computing. r foundation for statistical computing, URL: https://www.R-project.org/.Vienna, Austria.
  • Regard, V., Bellier, O., Thomas, J., Abbassi, M. R., Mercier, J., Shabanian, E., Feghhi, K. and Soleymani, S. (2004). Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: A transition between collision and subduction through a young deforming system, Tectonics 23: TC4007. https://doi.org/10.1029/2003TC001599.
  • RStudio Team (2017). Rstudio: Integrated development environment for r, https://www.RStudio.com/. RStudio Inc., Boston, MA.
  • Sandwell, D. T., Muller, R. D. v Smith, W. H. F., Garcia, E. and Francis, R. (2014). New global ¨ marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure, Science 7346: 65-67. https://doi.org/10.1126/science.1258213.
  • Sandwell, D. T. and Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry, Journal of Geophysical Research 102: 10039-10054. https://doi.org/10.1029/96JB03223.
  • Saura, E., Garcia-Castellanos, D., Casciello, E., Parravano, V., Urruela, A. and Verges, J. (2015). ´ Modeling the flexural evolution of the Amiran and Mesopotamian foreland basins of NW Zagros (Iran-Iraq), Tectonics 34. https://doi.org/10.1002/2014TC003660.
  • Schoenbohm, L. M. (2022). 2.07 - Tectonic Geomorphology of Continental Collision Zones, in J. J. F. Shroder (ed.), Treatise on Geomorphology, 2 edn, Academic Press, Oxford, pp. 120-149.
  • Senturk, S., Cakir, Z. and Berk Ustundag, B. (2016). The potential of sentinel-ia interferometric sar data in monitoring of surface subsidence caused by overdrafting groundwater in agricultural areas, 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), pp. 1-4.
  • Sepehr, M. and Cosgrove, J. W. (2004). Structural framework of the Zagros Fold-Thrust Belt, Iran, Marine and Petroleum Geology 21: 829-843. https://doi.org/10.1016/j.marpetgeo.2003.07.006.
  • Shi, H., Du, Z., Lu, Y., Hu, X. and Ke, X. (2009). Amery ice shelf digital elevation model from glas and gmt, 2009 Third International Symposium on Intelligent Information Technology Application, Vol. 2, pp. 129-133.
  • Soleimani, M. and Jodeiri Shokri, B. (2016). Intrinsic geological model generation for chromite pods in the Sabzevar ophiolite complex, NE Iran, Ore Geology Reviews 78: 138-150.
  • Spooner, C., Scheck-Wenderoth, M., Cacace, M., Götze, H.-J. and Luijendijk, E. (2020). The 3D thermal field across the Alpine orogen and its forelands and the relation to seismicity, Global and Planetary Change 193: 103288. https://doi.org/10.1016/j.gloplacha.2020.103288.
  • Talebian, M. and Jackson, J. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran, Geophysical Journal International 156: 506-526. https://doi.org/10.1111/j.1365-246X.2004.02092.x.
  • Tavakoli, F., Walperdorf, A., Authemayou, C., Nankal, i. H. R., Hatzfeld, D., Tatar, M., Djamour, Y., Nilforoushan, F. and Cotte, N. (2008). Distribution of the right-lateral strike-slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities, Earth and Planetary Science Letters 275: 342-347. https://doi.org/10.1016/j.epsl.2008.08.030.
  • Tavani, S., Parente, M., Vitale, S., Iannace, A., Corradetti, A., Bottini, C., Morsalnejad, D. and Mazzoli, S. (2018). Early Jurassic rifting of the Arabian passive continental margin of the Neo-Tethys. Field evidence from the Lurestan region of the Zagros fold-and-thrust belt, Iran, Tectonics 37: 2586-2607. https://doi.org/10.1029/2018TC005192.
  • Tennekes, M. (2018). tmap: Thematic Maps in R, Journal of Statistical Software 84: 1-39. https://doi.org/10.18637/jss.v084.i06.
  • Toosi, A., Javan, F. D., Samadzadegan, F., Mehravar, S., Kurban, A. and Azadi, H. (2022). Citrus orchard mapping in juybar, iran: Analysis of ndvi time series and feature fusion of multi-source satellite imageries, Ecological Informatics p. 101733.
  • Virden, W., Habermann, T., Glover, G., Divins, D., Sharman, G. and Fox, C. (2004). Multibeam bathymetric data at NOAA/NGDC, Oceans’04 MTS/IEEE Techno-Ocean’04 (IEEE Cat. No.04CH37600), Vol. 2, pp. 1159-1162 Vol. 2.
  • Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G. M. and Liu, M. (2015). 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations, Journal of Palaeogeography 4: 64-84. https://doi.org/10.3724/SP.J.1261.2015.00068.
  • Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F. and Tian, D. (2019). The Generic Mapping Tools version 6., Geochemistry, Geophysics, Geosystems 20: 5556-5564. https://doi.org/10.1029/2019GC008515.
  • Yamini-Fard, F., Hatzfeld, D., Tatar, M. and Mokhtari, M. (2006). Microearthquake seismicity at the intersection between the Kazerun fault and the Main Recent Fault (Zagros, Iran), Geophysical Journal International 166: 186-196. https://doi.org/10.1111/j.1365-246X.2006.02891.x.
  • Zarasvandi, A., Fereydouni, Z., Alizadeh, B., Absar, N., Dutt Shukla, A., Qaim Raza, M., Ashok, M. and Zentilli, M. (2021). Phosphogenesis in the zagros fold-thrust belt, iran: The link between the tethyan paleoenvironment and phosphate ore deposition, Ore Geology Reviews 139: 104563.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d56d9f3a-6570-4e6e-a3cc-3dae29da2871
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.