Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In the present study, commercial activated carbon (CWZ-14) is tested for the removal of the anionic azodye Direct Red 23 (DR23) from aqueous solutions. The effect of parameters such as initial dye concentration (10‒50 mg/L), pH (3.4‒11.4), and temperature (20‒60 °C) on the adsorption process is studied. The structure and morphology of the commercial activated carbon, as the quality attributes of the adsorbents, are characterized by scanning electron microscope (SEM), N2 adsorption/desorption isotherms (BET), and Fourier transform infrared spectroscope (FTIR). To understand the adsorption behavior of DR23 onto CWZ-14, the experimental kinetic data are analyzed using the pseudo-first-order and pseudo-second-order models. The kinetics of the adsorption of the dye followed the pseudo-second-order kinetics. The isotherms of adsorption data are analyzed via the Langmuir and the Freundlich models. It is observed that the experimental data effectively fits the Langmuir model. The maximum adsorption capacity calculated from the Langmuir isotherm, qm, is 104.2 mg/g. The experimental findings showed that the adsorption is a pH-dependent process, with the maximum adsorption capacity occurring at a pH of 7. Thermodynamic parameters, such as changes in standard free energy (∆G°), enthalpy (∆H°), and entropy (∆S°), are also evaluated. The thermodynamic analysis shows that the adsorption process is endothermic, spontaneous, and a physisorption process.
Rocznik
Tom
Strony
93--104
Opis fizyczny
Bibliogr. 57., rys., tab.
Twórcy
autor
- Maritime University of Szczecin, Faculty of Engineering and Economic of Transport Department of Environmental Protection and Commodity Science 11 H. Pobożnego St., 70-507 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Engineering and Economic of Transport Department of Environmental Protection and Commodity Science 11 H. Pobożnego St., 70-507 Szczecin, Poland
autor
- Maritime University of Szczecin, Faculty of Engineering and Economic of Transport Department of Environmental Protection and Commodity Science 11 H. Pobożnego St., 70-507 Szczecin, Poland
Bibliografia
- 1. Abdelwahab, O., El Nemr, A., El Sikaily, A. & Khaled, A. (2005) Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of Direct F. Scarlet. Egyptian Journal of Aquatic Research 31, pp. 1‒11.
- 2. Achmad, A., Kassim, J., Suan, T.K., Amat, R.C. & Seey, T.L. (2012) Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria Gambir extract. Journal of Physical Science 23 (1), pp. 1‒13.
- 3. Adjero, L.A., Ezejiofor, T.I.N., Udebuani, A.C., Dur, C.M. & Nwachukwu, M.O. (2023) Extraction of dye pigments from different endemic plant samples using various extraction methods. International Research Journal of Natural Sciences 12 (1), pp. 15‒24, doi: 10.37745/irjns.13/ vol12n11524.
- 4. Agarwala, R. & Mulky, L. (2023) Adsorption of dyes from wastewater: A comprehensive review. ChemBioEng Reviews 10(3), pp. 326‒335, doi: 10.1002/cben.202200011.
- 5. Ahmad, A.A., Hameed, B.H. & Aziz, N. (2007) Adsorption of direct dye on palm ash: Kinetic and equilibrium modeling. Journal of Hazardous Materials 141, pp. 70‒76, doi: 10.1016/j.jhazmat.2006.06.094.
- 6. Ai, L., Zhou, Y. & Jiang, J. (2011) Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, pp. 72‒77, doi: 10.1016/j.desal.2010.08.004.
- 7. Ardejani, F.D., Badii, Kh., Limaee, N.Y., Mahmoodi, N.M., Arami, M., Shafaei, S.Z. & Mirhabibi, A.R. (2007) Numerical modelling and laboratory studies on the removal of Direct Red 23 and Direct Red 80 dyes from textile effluents using orange peel a low‒cost adsorbent. Dyes and Pigments 73 (2), pp. 178‒185, doi: 10.1016/j.dyepig.2005.11. 011.
- 8. Bayramoglu, G., Altintas, B. & Arica, M.Y. (2009) Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal 152, pp. 339‒346, doi: 10.1016/j.cej.2009.04.051.
- 9. Bhatia, D., Sharma, N.R., Singh, J. & Kanwar, R.S. (2017) Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology 47 (19), pp. 1836‒1876, doi: 10. 1080/10643389.2017.1393263.
- 10. Bouatay, F., Dridi-Dhaouadi, S., Drira, N. & Mhenni, M.F. (2016) Application of modified clays as an adsorbent for the removal of Basic Red 46 and Reactive Yellow 181 from aqueous solution. Desalination and Water Treatment 57, pp. 13561‒13572, doi: 10.1080/19443994.2015.10619 53.
- 11. Boumediene, M., Benaïssa, H., George, B., Molina, S. & Merlin, A. (2018) Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study. Journal of Materials and Environmental Sciences 9 (6), pp. 1700‒1711, doi: 10.26872/jmes.2018.9.6.190.
- 12. Carletto, R.A., Chimirri, F., Bosco, F. & Ferrero, F. (2008) Adsorption of Congo Red dye on hazelnut shells and degradation with Phanerochaete chrysosporium. BioResources 3 (4), pp. 1146‒1155, doi: 10.15376/ biores.3.4.1146-1155.
- 13. Chen, A.H. & Chen, S.M. (2009) Biosorption of azo dyes from aqueous solution by glutaraldehyde-crosslinked chitosans. Journal of Hazardous Materials 172, pp. 1111‒1121, doi: 10.1016/j.jhazmat.2009.07.104.
- 14. Chen, Y., He, F., Ren, Y., Peng, H. & Huang, K. (2014) Fabrication of chitosan/PAA multilayer onto magnetic microspheres by LbL method for removal of dyes. Chemical Engineering Journal 249, pp. 79‒92, doi: 10.1016/j. cej.2014.03.093.
- 15. Chung, K.T. (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutation Research 114 (3), pp. 269–281, doi: 10.1016/0165- 1110(83)90035-0.
- 16. Coates, J. (2000) Interpretation of infrared spectra, a practical approach. In: Meyers, R.A. (ed.). Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons Ltd., doi: 10.1002/9780470027318. a5606.
- 17. Degs, Y.S.A., Barghouthi, M.I.E., Sheikh, A.H.E. & Walker, G.M. (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments 77 (1), pp. 16‒23, doi: 10.1016/j.dyepig.2007.03.001.
- 18. Degs, Y.S.A., Khraisheh, M.A.M., Allen, S.J. & Ahmad, M.N. (2000) Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Research 34 (3), pp. 927‒935, doi: 10.1016/S0043-1354(99)00200-6.
- 19. Degs, Y.S.A., Khraisheh, M.A.M., Allen, S.J. & Ahmad, M.N. (2009) Adsorption characteristics of reactive dyes in columns of activated carbon. Journal of Hazardous Materials 165, pp. 944‒949, doi: 10.1016/j.jhazmat.2008.10.081.
- 20. Degs, Y.S.A., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N. & Walker, G.M. (2007) Competitive adsorption of reactive dyes from solution: Equilibrium isotherm studies in single and multisolute systems. Chemical Engineering Journal 128 (2‒3), pp. 163‒167, doi: 10.1016/j. cej.2006.10.009.
- 21. Fu, J., Chen, Z., Wu, X., Wang, M., Wang, X., Zhang, J., Zhang, J. & Xu, Q. (2015) Hollow poly(cyclotriphosphazene-co-phloroglucinol) microspheres: An effective and selective adsorbent for the removal of cationic dyes from aqueous solution. Chemical Engineering Journal 281, pp. 42‒52, doi: 10.1016/j.cej.2015.06.088.
- 22. Gadekar, M.R. & Ahammed, M.M. (2016) Coagulation/ flocculation process for dye removal using water treatment residuals: modelling through artificial neural networks. Desalination and Water Treatment 57 (55), pp. 26392‒26400, doi: 10.1080/19443994.2016.1165150.
- 23. Hassaan, M.A., Nemr, A.E., El-Zahhar, A.A., Idris, A.M., Alghamdi, M.M., Sahlabji, T. & Said, T.O. (2020) Degradation mechanism of Direct Red 23 dye by advanced oxidation processes: a comparative study. Toxin Reviews 41 (1), pp. 1‒9, doi: 10.1080/15569543.2020.1827431.
- 24. Hebeish, A., Ramadan, M.A., Halim, E.A. & Okeil, A.A. (2011) An effective adsorbent based on sawdust for removal of direct dye from aqueous solutions. Clean Technologies and Environmental Policy 13 (5), 713‒718, doi: 10.1007/ s10098-010-0343-z.
- 25. Holliman, P.J., Velasco, B.V., Butler, I., Wijdekop, M. & Worsley, D.A. (2008) Studies of dye sensitisation kinetics and sorption isotherms of direct red 23 on titania. International Journal of Photoenergy 2008, 827605, doi: 10.1155/2008/827605.
- 26. Homagai, P.L., Poudel, R., Poudel, S. & Bhattarai, A. (2022) Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon 8, e09261, doi: 10.1016/j.heliyon.2022.e09261.
- 27. Husien, S., El-taweel, R.M., Salim, A.I., Fahim, I.S., Said, L.A. & Radwan, A.G. (2022) Review of activated carbon adsorbent material for textile dyes removal: Preparation, and modeling. Current Research in Green and Sustainable Chemistry 5, 100325, doi: 10.1016/j.crgsc.2022.100325.
- 28. Ikhlaq, A., Zafar, M., Javed, F., Yasar, A., Akram, A., Shabbir, S. & Qi, F. (2021) Catalytic ozonation for the removal of reactive black 5 (RB-5) dye using zeolites modified with CuMn2O4/gC3N4 in a synergic electro flocculationcatalytic ozonation process. Water Science and Technology 84 (8), pp. 1943‒1953, doi: 10.2166/wst.2021.404.
- 29. Innocenzi, V., Colangeli, A. & Prisciandaro, M. (2022) Advanced oxidation processes for the removal of dyes from synthetic industrial wastewaters. Desalination and Water Treatment 259, pp. 315‒320, doi: 10.5004/dwt.2022.28629.
- 30. Konicki, W., Pełech, I., Mijowska, E. & Jasińska, I. (2012) Adsorption of anionic dye Direct Red 23 onto magnetic multi-walled carbon nanotubes-Fe3C nanocomposite: Kinetics, equilibrium and thermodynamics. Chemical Engineering Journal 210, pp. 87–95, doi: 10.1016/j.cej.2012.08. 025.
- 31. Kuo, C.Y., Wu, C.H. & Wu, J.Y. (2008) Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science 327 (2), pp. 308‒315, doi: 10.1016/j.jcis.2008.08.038.
- 32. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. (2019) Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation 3, pp. 275‒290, doi: 10.1016/j.biori.2019.09.001.
- 33. Mohan, D., Singh, K.P., Singh, G. & Kumar, K. (2002) Removal of dyes from wastewater using flyash, a low-cost adsorbent. Industrial & Engineering Chemistry Research 41 (15), pp. 3688‒3695, doi: 10.1021/ie010667+.
- 34. Moradihamedani, P. (2022) Recent advances in dye removal from wastewater by membrane technology: a review. Polymer Bulletin 79 (4), pp. 1‒29, doi: 10.1007/s00289- 021-03603-2.
- 35. Nandi, B.K., Goswami, A. & Purkait, M.K. (2009) Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science 42, pp. 583‒590, doi: 10.1016/j.clay.2008.03.015.
- 36. Pathania, D., Sharma, S. & Singh, P. (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry 10, pp. S1445‒S1451, doi: 10.1016/j.arabjc.2013.04.021.
- 37. Prehu, I. (2024) 5 environmental impacts of textile industry, and 3 ways to be more sustainable. [Online]. Available from: https://watertreatmentmagazine.com/en/impact-textile-industry/ [Accessed: November 28, 2024].
- 38. Purkait, M.K., DasGupta, S. & De, S. (2005) Adsorption of eosin dye on activated carbon and its surfactant based desorption. Journal of Environmental Management 76, pp. 135‒142, doi: 10.1016/j.jenvman.2005.01.012.
- 39. Rashed, S.M.A. & Gaid, A.A.A. (2012) Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. Journal of Saudi Chemical Society 16, pp. 209‒215, doi: 10.1016/j.jscs.2011.01.002.
- 40. Rub, S.S.A.A., Alyami, B.A., Alqahtani, Y.S., Alqarih, A.R., Dunquwah, B.A., Alyami, M.M., Alghithan, S.K., Alsalah, H.H. & Aburub, A.S. (2024) Comparative adsorption of methyl orange color from an aqueous solution using activated carbon. Indian Journal of Pharmaceutical Education and Research 58 (2), pp. 679‒684, doi: 10.5530/ ijper.58.2.76.
- 41. Serban, G.V., Iancu, V.I., Dinu, C., Tenea, A., Vasilache, N., Cristea, I., Niculescu, M., Ionescu, I. & Chiriac, F.L. (2023) Removal efficiency and adsorption kinetics of methyl orange from wastewater by commercial activated carbon. Sustainability 15, pp. 1‒17, doi: 10.3390/su151712939.
- 42. Sharma, P. & Das, M.R. (2012) Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: Investigation of adsorption parameters. Journal of Chemical & Engineering Data 58 (1), pp. 151‒158, doi: 10.1021/ je301020n.
- 43. Sivaraj, R., Namasivayam, C. & Kadirvelu, K. (2001) Orange peel as an adsorbent in the removal of Acid violet 17 (acid dye) from aqueous solutions. Waste Management 21 (1), 2001, pp. 105‒110, doi: 10.1016/S0956- 053X(00)00076-3.
- 44. Stuart, B.H. (2004) Infrared Spectroscopy: Fundamentals and Applications. John Wiley &Sons Ltd.
- 45. Syeda, S.R., Ferdousi, S.A. & Ahmmed, K.M.T. (2012) Decolorization of textile wastewater by adsorption in a fluidized bed of locally available activated carbon. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 47 (2), pp. 210‒220, doi: 10.1080/10934529.2012.640566.
- 46. Tan, L.S., Jain, K. & Rozaini, C.A. (2010) Adsorption of textile dye from aqueous solution on pretreated mangrove bark, an agricultural waste: equilibrium and kinetic studies. Journal of Applied Sciences in Environmental Sanitation 5 (3), pp. 283‒294.
- 47. Uddin, T., Rahman, A., Rukanuzzaman & Islam, A. (2017) A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Applied Water Science 7, pp. 2831‒2842, doi: 10.1007/s13201-017-0542-4.
- 48. Vojnović, B., Cetina, M., Franjković, P. & Sutlović, A. (2022) Influence of initial pH value on the adsorption of reactive black 5 dye on powdered activated carbon: Kinetics, mechanisms, and thermodynamics. Molecules 27 (4), pp. 1‒12, doi: 10.3390/molecules27041349.
- 49. Walker, G.M. & Wealtherley, L.R. (1997) Adsorption of acid dyes onto granular activated carbon in fixed beds. Water Research 31 (8), pp. 2093‒2101, doi: 10.1016/S0043- 1354(97)00039-0.
- 50. Walker, G.M. & Wealtherley, L.R. (1998) Fixed bed adsorption of acid dyes onto activated carbon. Environmental Pollution 99 (1), pp. 133‒136, doi: 10.1016/s0269- 7491(97)00166-8.
- 51. Walker, G.M. & Weatherley, L.R. (2000) Textile wastewater treatment using granular activated carbon adsorption in fixed beds. Separation Science and Technology 35 (9), pp. 1329‒1341, doi: 10.1081/SS-100100227.
- 52. Wei, C.C., Pathiraja, I.K., Fabry, E., Schafer, K., Schimp, N., Hu, T.P. & Norcio, L.P. (2018) Removal of acid yellow 25 from aqueous solution by chitin prepared from waste snow crab legs. Journal of Encapsulation and Adsorption Sciences 8, pp. 139‒155, doi: 10.4236/jeas.2018.83007.
- 53. Wu, C.H. (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. Journal of Colloid and Interface Science 311, pp. 338‒346, doi: 10.1016/j.jcis.2007.02.077.
- 54. Yeh, R.Y.L. & Thomas, A. (1995) Color removal from dye wastewaters by adsorption using powdered activated carbon: Mass transfer studies. Journal of Chemical Technology & Biotechnology 63 (1), pp. 48‒54, doi: 10.1002/ jctb.280630107.
- 55. Zahrim, A.Y., Tizaoui, C. & Hilal, N. (2011) Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review. Desalination 266 (1‒3), pp. 1‒16, doi: 10.1016/j.desal.2010.08.012.
- 56. Zeng, S., Duan, S., Tang, R., Li, L., Liu, C. & Sun, D. (2014) Magnetically separable Ni0.6Fe2.4O4 nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chemical Engineering Journal 258, pp. 218‒228, doi: 10.1016/j.cej.2014.07.093.
- 57. Zhang, Y.R., Su, P., Huang, J., Wang, Q.R. & Zhao, B.X. (2015) A magnetic nanomaterial modified with poly-lysine for efficient removal of anionic dyes from water. Chemical Engineering Journal 262, pp. 313‒318, doi: 10.1016/j. cej.2014.09.094.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d56d6086-a459-4dff-92dd-a58432f3e187
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.