PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser-Assisted Thermomechanical Bending of Tube Profiles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego Str., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego Str., 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5b Pawińskiego Str., 02-106 Warsaw, Poland
autor
  • Kielce University of Technology, Department of Industrial Laser Systems, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Bibliografia
  • [1] J. Michalczyk, K. Wojsyk, Development and Modelling of the Method of Mandrel-less Small-Radius Tube Bending, Arch. Metall. Mater. 60 (4), 2797-2803 (2015).
  • [2] N. C. Tang, Plastic-deformation analysis in tube bending, International Journal of Pressure Vessels and Piping 77, 751-759 (2000).
  • [3] H. Yang, Y. Lin, Wrinkling analysis for forming limit of tube bending processes, Journal of Materials Processing Technology 152, 363-369 (2004).
  • [4] H. Frackiewicz, Forming metal pipe and tube with laser. High-power optical beam method developed for fabricators, The Tube and Pipe Quarterly 3, 3 (1992).
  • [5] H. Frackiewicz, W. Trampczynski, W. Przetakiewicz, Shaping of Tubes by Laser Beam, Proc. of the 25th ISATA 373-380 (1992).
  • [6] Z. Mucha, J. Widłaszewski, M. Cabaj, R. Gradoń, Surface temperature control in laser forming. Archives of Thermodynamics 24 (2), 89-105 (2003).
  • [7] Z. Mucha, J. Widłaszewski, Physical Foundations of Laser Thermal Forming, Proceedings of the 1st International Conference on New Forming Technology, ICNFT. Eds.: Wang Z. R., Dean T. A., Yuan S. J., Harbin Institute of Technology Press 235-240, 2004.
  • [8] J. M. Allwood, H. Utsunomiy, A survey of flexible forming processes in Japan. International Journal of Machine Tools & Manufacture 46, 1939-1960 (2006).
  • [9] W. Zhang, J. Marte, D. Mika, M. Graham, B. Farrell, M. Jones, Laser forming: Industrial applications, ICALEO 2004 – 23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings (2004).
  • [10] W. Zhang, M. Jones, M. Graham, B. Farrell, M. Azer, C. Erikson, J. Zhang, Y. L. Yao, Large diameter and thin wall laser tube bending, ICALEO 2005 - 24th International Congress on Applications of Lasers and Electro-Optics, Congress Proceedings 64-73 (2005).
  • [11] H. Li, H. Yang, Z. Y. Zhang, G. J. Li, Multiple instability-constrained tube bending limits, Journal of Materials Processing Technology 214, 445-455 (2014).
  • [12] E. Simonetto, G. Venturato, A. Ghiotti, S. Bruschi, Modelling of hot rotary draw bending for thin-walled titanium alloy tubes, International Journal of Mechanical Sciences 148, 698-706 (2018).
  • [13] Z. Hu, J. Q. Li, Computer simulation of pipe-bending processes with small bending radius using local induction heating, Journal of Materials Processing Technology 91, 75-79 (1999).
  • [14] M. Cieśla, R. Findziński, G. Junak, T. Kawała, The effect of heat treatment parameters on mechanical characteristics of 10CrMo9-10 steel tube bends, Archives of Metallurgy and Materials 60 (4), 2971-2976 (2015).
  • [15] A. Kratky, Laser Assisted Forming Techniques. XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, edited by Dieter Schuöcker. Proceedings of SPIE 6346, 634615, (2007).
  • [16] Hsieh H.-S., Lin J., Study of the buckling mechanism in laser tube forming with axial preloads. International Journal of Machine Tools and Manufacture 45, 1368-1374 (2005).
  • [17] M. C. Jamil., E. I. Fauzi, C. S. Juinn, M. A. Sheikh, Laser bending of pre-stressed thin-walled nickel micro-tubes. Opt. Laser Technol. 73, 105-117 (2015).
  • [18] J. Widłaszewski, M. Nowak, Z. Nowak, P. Kurp, Laser-assisted forming of thin-walled profiles Metal Forming 28, 3, 183-198 (2017).
  • [19] P. Kurp, J. Widłaszewski, Z. Mucha, Laser-mechanical hybrid forming of thin-walled elements. 27th International Conference on Metallurgy and Materials - METAL 2018, Brno, Czech Republic, 23-25 May, 2018. Conference Proceedings, 407-412. ISBN 978-80-87294-84-0.
  • [20] H.-S. Hsieh, J. Lin, Laser-induced vibration during pulsed laser forming. Optics & Laser Technology 36, 431-439 (2004).
  • [21] V. V. Frolov, V. A. Vinokurov, W. N. Volczenko, V. A. Parachin, I. A. Arutionova, Theoretical fundamentals of welding (Teoreticheskie osnovy svarki - in Russian). Izdatel’stvo Vysshaya Shkola, Moscow (1970).
  • [22] L. Colombier, J. Hochmann, Stainless and Heat-Resisting Steels. Edward Arnold, London, UK (1967).
  • [23] C. S. Kim, Thermophysical properties of stainless steels. Technical Report ANL-75-55. Argonne National Laboratory, Argonne Ill., 1-24 (1975).
  • [24] J. Chen, B. Young, Stress-strain curves for stainless steel at elevated temperatures. Engineering Structures 28, 229-239 (2006).
  • [25] J. Widłaszewski, The effects of design parameters on the laser-induced in-plane deformation of two-bridge actuators. International Journal of Machine Tools and Manufacture 80-81C, 30-38 (2014).
  • [26] Z. Mucha, J. Widłaszewski, P. Kurp, K. Mulczyk, Mechanically-assisted laser forming of thin beams, Proc. of SPIE, 10159 (2016).
  • [27] Z. Nowak, M. Nowak, J. Widłaszewski, P. Kurp, Experimental and numerical investigation on laser-assisted bending of pre-loaded metal plate. AIP Conference Proceedings, American Institute of Physics, 1922, 140006 (2018).
  • [28] X.-t. Li, M.-t. Wang, F.-s. Du, Z.-q. Xu, FEM Simulation of Large Diameter Pipe Bending Using Local Heating. Journal of Iron and Steel Research International 13, 5, 25-29 (2006).
  • [29] T. Welo, F. Paulsen, Predicting Tube Ovalization in Cold Bending: An Analytical Approach. Key Engineering Materials 651-653, 1146-1152 (2015).
Uwagi
EN
1. The research reported herein was supported by a grant from the National Centre for Research and Development (No. PBS3/A5/47/2015).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d56c14be-0890-4072-b51d-2e9d891e6161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.