PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Noise sensitivity of selected kinematic path following controllers for a unicycle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper a path following problem for a wheeled mobile robot of (2,0) type has been considered. The kinematic model of the robot was derived with respect to the Serret-Frenet frame. Two kinematic control algorithms - Samson and Morin-Samson - have been tested taking into account their sensitivity to a white noise with a zero mean appearing in the one of state variables. The properties of path following errors have been analysed using statistical techniques. The conclusions related to an acceptable level of noise and a range of applicability of the presented algorithms have been reached.
Rocznik
Strony
3--13
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Computer Engineering, Control and Robotics, Wroclaw University of Technology, 11/17 Janiszewski St., 50-372 Wroclaw, Poland
  • Institute of Computer Engineering, Control and Robotics, Wroclaw University of Technology, 11/17 Janiszewski St., 50-372 Wroclaw, Poland
Bibliografia
  • [1] Z. Li and J.F. Canny, Nonholonomic Motion Planning, vol. 192, Springer, Berlin, 1993.
  • [2] A.M. Bloch, Nonholonomic Mechanics and Control, vol. 24, Springer, Berlin, 2003.
  • [3] I. Dule¸ba, “Impact of control representations on efficiency of local nonholonomic motion planning”, Bull. Pol. Ac.: Tech. 59 (2), 213-218 (2011).
  • [4] G. Campion and W. Chung, “Wheeled robots”, in Handbook of Robotics, eds. B. Siciliano and O. Khatib, Springer-Verlag, Berlin, 2008.
  • [5] J.B. Pomet, “Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift”, Systems & Control Letters 18, 147-158 (1992).
  • [6] A. Mazur, “Hybrid adaptive control laws solving a path following problem for nonholonomic mobile manipulators”, Int.J. Control 77 (15), 1297-1306 (2004).
  • [7] C. Samson, “Path following and time-varying feedback stabilization of a wheeled mobile robots”, Proc. IEEE Int. Conf. on Advanced Robotics and Computer Vision 1, 1.1-1.5 (1992).
  • [8] D. Soetanto, L. Lapierre, and A. Pascoal, “Adaptive, nonsingular path-following control of dynamic wheeled robots”, Proc. IEEE Conf. on Decision and Control 2, 1765-1770 (2003).
  • [9] A. Morro, A. Sgorbissa, and R. Zaccaria, “Path following for unicycle robots with an arbitrary path curvature”, IEEE Trans. on Robotics 27 (5), 1016-1023 (2011).
  • [10] P. Morin and C. Samson, “Motion control of wheeled mobile robots”, in Handbook of Robotics, eds. B. Siciliano and O. Khatib, Springer-Verlag, Berlin, 2008.
  • [11] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like robot”, in Robot Motion Planning and Control ed. J.-P. Laumond, pp. 171-253, Springer-Verlag, Berlin, 1998.
  • [12] L. Meeden, Bridging the Gap Between Robot Simulations and Reality with Improved Models of Sensor Noise, Morgan Kaufman Publishers, San Francisco, 1998.
  • [13] O. Miglino, H.H. Lund, and S. Nolfi, “Evolving mobile robots in simulated and real environments”, Artificial Life 2, 417-434 (1996).
  • [14] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics”, in Intelligent Robotics and Autonomous Agents, MIT Press, London, 2005. ISBN 9780262201629, LCCN 2005043346.
  • [15] D. A. Liz´arraga, P. Morin, and C. Samson, “Non-robustness of continuous homogeneous stabilizers for affine control systems”, Proc. 38th IEEE Conf. on Decision and Control 1, 855-860 (1999).
  • [16] Ch. Prieur and A. Astolfi, “Robust stabilization of chained systems via hybrid control”, IEEE Trans. on Automatic Control 48 (10), 1768-1772 (2003).
  • [17] G. Oriolo, A. De Luca, and M. Vendittelli, “WMR control via dynamic feedback linearization: design, implementation, and experimental validation”, IEEE Trans. on Control Systems Technology 10 (6), 835-852 (2002).
  • [18] D. Pazderski, B. Krysiak, and K. Kozłowski, “A comparison study of discontinuous control algorithms for a three-link nonholonomic manipulator”, in Robot Motion and Control 2011, pp. 377-389, Springer, Berlin, 2012.
  • [19] A. Fradkov, I. Miroshnik, and V. Nikiforov, Nonlinear and Adaptive Control of Complex Systems, Kluwer Academic Publishers, Dordrecht, 1999.
  • [20] J. Płaskonka, “The path following control of a nonholonomic car-like robot”, ICT Young 2012 - Conference Materials 1, 573-579 (2012).
  • [21] J. Płaskonka, “The path following control of a unicycle based on the chained form of a kinematic model derived with respect to the Serret-Frenet frame”, 17th Int. Conf. on Methods and Models in Automation & Robotics 1, CD-ROM (2012).
  • [22] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin, “Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?” J. Econometrics 54 (1-3), 159-178 (1992).
  • [23] H. Lilliefors, “On the Kolmogorov-Smirnov test for normality with mean and variance unknown”, J. American Statistical Association 62, 399-402 (1967).
  • [24] D.C. Montgomery and G.C. Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons, London, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d568dc8d-8ad9-45a4-aa8a-3f68de17f417
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.