PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Ground Ozone Level under the Physiological Strain Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Urban areas are characterised by the impact of negative environmental factors, such as: stress connected with extreme bio-thermal conditions or the presence of high concentrations of air pollutants. This study aims to evaluate the relationship between the hours of O3 concentrations and the levels of physiological strain (PhS) in Legnica, during the period from December 2013 to November 2014. The hourly concentrations of O3, NO2 and meteorological elements used in the study were obtained from the State Environmental Monitoring station in Legnica (Lower Silesia). The evaluation of the bio-thermal conditions was carried out by means of the physiological strain indicator (PhS). The basic statistics were subject to analysis, the frequency of hourly pollution concentrations and the thermal strain were evaluated, as was the Pearson correlation coefficient and multiple regression between O3 and PhS. A detailed analysis was carried out for the summer months (June-August). The most adverse conditions in terms of pollution with tropospheric ozone and heat strain were noted in July. The strongest relations between O3 and PhS were observed in June. In winter months (December-February) no significant dependencies were noted between the tested variables. These tests will help to contribute to increasing the current knowledge on evaluating the thermal comfort of urbanised areas and the accompanying aero-sanitary conditions.
Słowa kluczowe
Rocznik
Strony
207--216
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Institute of Landscape Architecture, Grunwaldzka 55, 50-357 Wrocław, Poland
  • Wrocław University of Environmental and Life Sciences, Institute of Landscape Architecture, Grunwaldzka 55, 50-357 Wrocław, Poland
Bibliografia
  • 1. BioKlima© 2.6., https://www.igipz.pan.pl/Bioklima-zgik.html; 31.09.2016.
  • 2. Błażejczyk A., Błażejczyk, K., Baranowski, J., & Kuchcik, M. 2017. Heat stress mortality and desired adaptation responses of healthcare system in Poland. International Journal of Biometeorology, 1-12.
  • 3. Błażejczyk, K. 2004. Radiation balance in man in various meteorological and geographical conditions. Geographia Polonica, 77(1), 63-76.
  • 4. Błażejczyk K., Matzarakis A. 2007. Assessment of bioclimatic differentiation of Poland, based on the human heat balance. Geographia Polonica, 80(1), 63-82.
  • 5. Boumans R.J., Phillips D.L., Victory W., Fontaine, T.D. 2014. Developing a model for effects of climate change on human health and health–environment interactions: heat stress in Austin, Texas. Urban Climate, 8, 78-99.
  • 6. Carnero J.A., Bolívar J.P., de la Morena B.A. 2010. Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain). Environmental Science and Pollution Research, 17(2), 355-368.
  • 7. Central Statistical Office 2015, http://stat.gov.pl/; 4.11.2017.
  • 8. Chen, C. H., Chan, C. C., Chen, B. Y., Cheng, T. J., Guo, Y. L. 2015. Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environmental Research, 137, 40-48.
  • 9. Clapp L. J., Jenkin M. E. 2001. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmospheric Environment, 35(36), 6391-6405.
  • 10. Czarnecka M., Nidzgorska-Lencewicz J. 2014. Intensity of Urban Heat Island and Air Quality in Gdańsk during 2010 Heat Wave. Polish Journal of Environmental Studies, 23(2), 329-340.
  • 11. Escudero M., Lozano A., Hierro J., del Valle J., Mantilla, E. 2014. Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration. Atmospheric Environment, 99, 322-332.
  • 12. Frischer T., Studnicka M., Gartner C., Tauber E., Horak F., Veiter A., Spengler J., Kühr J., Urbanek R. 1999. Lung function growth and ambient ozone: a three-year population study in school children. American Journal of Respiratory and Critical Care Medicine, 160(2), 390-396.
  • 13. Goodin, K., Hubbard M. 2016. Association between asthma hospital visits and ozone concentration in Maricopa County, Arizona (2007-2012). J. Environmental Health, 78(9), 8-13.
  • 14. Kalbarczyk R., Sobolewski R., Kalbarczyk E., 2015: Assessment of human thermal sensations based on bioclimatic indices in a suburban population, Wrocław (SW Poland). Polish Journal of Natural Sciences, 30(2), 185-201.
  • 15. Kalbarczyk R., Sobolewski R., Kalbarczyk E. 2016. Biometeorological determinants of the tropospheric ozone concentration in the suburban conditions of Wroclaw, Poland. Jorunal of Elementology, 21(3), 729-744.
  • 16. Kalbarczyk R., Kalbarczyk E., Niedźwiecka-Filipiak I., Serafin L. 2015. Ozone concentration at ground level depending on the content of NOx and meteorological conditions. Ecological Chemistry and Engineering S., 22(4), 527-541.
  • 17. Khaniabadi Y.O., Goudarzi G., Daryanoosh S.M., Borgini A., Tittarelli A., De Marco A. 2017. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Environmental Science and Pollution Research, 24(3), 2781-2789.
  • 18. Khatri S.B., Holguin F.C., Ryan P.B., Mannino D., Erzurum S.C., Teague W.G. 2009. Association of ambient ozone exposure with airway inflammation and allergy in adults with asthma. Journal of Asthma, 46(8), 777-785.
  • 19. Kinney P.L., Thurston G.D., Raizenne, M. 1996. The effects of ambient ozone on lung function in children: a reanalysis of six summer camp studies. Environmental Health Perspectives, 104(2), 170-174.
  • 20. Kleinman L.I. 2005. The dependence of tropospheric ozone production rate on ozone precursors. Atmospheric Environment, 39(3), 575-586.
  • 21. Mavrakis A., Spanou A., Pantavou K., Katavoutas G., Theoharatos G., Christides A., Verouti E. 2012. Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean: the Thriassion Plain, Greece. International Journal of Biometeorology, 56(4), 737-747.
  • 22. Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., Stevenson D.S., Tarasova O., Thouret V., von Schneidemesser E., Sommariva R., Wild O., Williams M.L. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15(15), 8889-8973.
  • 23. Nikolopoulou M., Lykoudis, S. 2006. Thermal comfort in outdoor urban spaces: analysis across different European countries. Building and Environment, 41(11), 1455-1470.
  • 24. Novack L., Yitshak-Sade M., Landau D., Kloog, I., Sarov, B., Karakis I. 2016. Association between ambient air pollution and proliferation of umbilical cord blood cells. Environmental Research, 151, 783-788.
  • 25. O’Lenick C.R., Chang H.H., Kramer M.R., Winquist A., Mulholland J.A. Friberg M.D., Sarnat S. E. 2017. Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach. Environmental Health, 16(1), 36.
  • 26. Paliatsos A.G., Nastos P.T. 1999. Relation between air pollution episodes and discomfort index in the greater Athens area, Greece. International Journal of Global Nest, 1(2), 91-97.
  • 27. Papanastasiou D.K., Melas D., Kambezidis H.D., 2015. Air quality and thermal comfort levels under extreme hot weather. Atmospheric Research, 152, 4-13.
  • 28. Park S., Tuller S.E., Jo M. 2014. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landscape and Urban Planning 125, 146-155.
  • 29. Pascal M., Wagner V., Chatignoux E., Falq G., Corso M., Blanchard M., Host S., Larrieu S., Laurence P., Declercq, C. 2012. Ozone and short-term mortality in nine French cities: Influence of temperature and season. Atmospheric Environment, 62, 566-572.
  • 30. Ramsey N.R., Klein M.P., Moore III B., 2014. The impact of meterological parameters on urban air quality. Atmos. Environ., 86, 58-67.
  • 31. Rozbicka K., Rozbicki, T. 2016. The “Weekend Effect” on Ozone in the Warsaw Conurbation, Poland. Polish Journal of Environmental Studies, 25(4), 1675-1683.
  • 32. Tager I.B., Balmes J., Lurmann F., Ngo L., Alcorn S., Kunzli N., 2005. Chronic exposure to ambient ozone and lung function in young adults. Epidemiology, 16, 751-759.
  • 33. Tiwari S., Dahiya A., Kumar N. 2015. Investigation into relationships among NO, NO2, NO x, O3, and CO at an urban background site in Delhi, India. Atmospheric Research, 157:,119-126.
  • 34. Uysal N., Schapira, R. M., 2003. Effects of ozone on lung function and lung diseases. Current Opinion in Pulmonary Medicine, 9, 144-150.
  • 35. van Hove L. W.A., Jacobs C.M.J., Heusinkveld B.G., Elbers J.A., van Driel B.L., Holtslag A.A.M. 2015. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103.
  • 36. Vandentorren S., Suzan F., Medina S., Pascal M., Maulpoix A., Cohen J. C., Ledrans M. 2004. Mortality in 13 French cities during the August 2003 heat wave. American Journal of Public Health, 94(9), 1518-1520.
  • 37. Wolf K., Cyrys J., Harciníková T., Gu J., Kusch T., Hampel R., Schneider A., Peters A. 2017. Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Science of the Total Environment, 579, 1531-1540.
  • 38. Zheng S., Singh R.P., Wu Y., Wu C. 2017. A Comparison of Trace Gases and Particulate Matter over Beijing (China) and Delhi (India). Water, Air, & Soil Pollution, 228(5), 181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d564f608-3f7c-4da3-b609-e2c76ff3f54f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.