PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and properties of chlorine and phosphorus containing rubber seed oil as a second plasticizer for flame retardant polyvinyl chloride materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The synthesis of multifunctional plasticizer using rubber seed oil can increase its added value and expand the application field of plasticized products. Recent studies on bio-based plasticizers focus on bio-based raw materials but products lack functionality. In this study, flame retardant phosphate and chlorine were introduced into the chemical structure of rubber seed oil to synthesis a nitrogen and phosphorus synergistic flame retardant plasticizer based on rubber seed oil(NPFP) and apply it to plasticize polyvinyl chloride (PVC). Thermal stability, limiting oxygen index, plasticizing property, solvent extraction resistance, and microstructure of plasticized PVC materials were characterized. The results showed that NPFP with excellent solvent extraction resistance can significantly enhance the limiting oxygen index and thermal stability of plasticized PVC materials, and can partially replace dioctyl phthalate(DOP) as multifunctional auxiliary plasticizer.
Rocznik
Strony
36--42
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
  • Yellow River Conservancy Technical Institute, Kaifeng 475004,China
  • Henan Engineering Technology Research Center of Green Coating Materials Kaifeng, China
autor
  • Henan Technical Institute Kaifeng, China
autor
  • Yellow River Conservancy Technical Institute Kaifeng, China
  • Henan Engineering Technology Research Center of Green Coating Materials Kaifeng, China
autor
  • Yellow River Conservancy Technical Institute Kaifeng, China
  • Henan Engineering Technology Research Center of Green Coating Materials Kaifeng, China
Bibliografia
  • 1. Bocqué, M., Voirin, C., Lapinte, V., Caillol, S. & Robin, J.J. (2016). Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. J. Polym. Sci. Part A: Polym. Chem., 54(1), 11–33. DOI: 10.1002/pola.27917.
  • 2. Warner, G.R. & Flaws, J.A. (2018). Bisphenol A and phthalates: how environmental chemicals are reshaping toxicology. Toxicol. Sci., 166(2), 246–249. DOI:10.1093/toxsci/kfy232.
  • 3. Vieira, M.G.A., Da Silva, M.A., Dos Santos, L.O. & Beppu, M.M. (2011). Natural-based plasticizers and biopolymer films: A Review. Europ. Polym. J., 47(3), 254–263. DOI: 10.1016/j.eurpolymj.2010.12.011.
  • 4. Hou, H., Min, Y., Liu, X., Wang, P., Zhou, Z. & Liu, D. (2021). Occurrence and migration of phthalates in adhesive materials to fruits and vegetables. J. Hazard. Mater., 418, 126277. DOI: 10.1016/j.jhazmat.2021.126277.
  • 5. Zych, A., Perotto, G., Trojanowska, D., Tedeschi, G., Bertolacci, L., Francini, N. & Athanassiou, A. (2021). Super tough polylactic acid plasticized with epoxidized soybean oil methyl ester for flexible food packaging. ACS Appl. Polym. Mater., 3(10), 5087–5095. DOI: 10.1021/acsapm.1c00832.
  • 6. Jia, P., Zhang, M., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Synthesis and application of environmental castor oil based polyol ester plasticizers for poly (vinyl chloride). ACS Sustain. Chem. & Engin., 3(9), 2187–2193. DOI:10.1021/acssuschemeng.5b00449.
  • 7. Briou, B., Caillol, S., Robin, J.J. & Lapinte, V. (2019). Non-endocrine disruptor effect for cardanol based plasticizer. Ind. Crops Products, 130, 1–8. DOI: 10.1016/j.indcrop.2018.12.060.
  • 8. Tan, J., Zhang, T., Wang, F., Huang, N., Yu, M., Wei, L. & Zhu, X. (2022). One-pot and industrial manufacturing of cardanol-based polyoxyethylene ether carboxylates as efficient and improved migration resistance plasticizers for PVC. J. Cleaner Prod., 375, 133943. DOI: 10.1016/j.jclepro.2022.133943.
  • 9. Jia, P., Hu, L., Shang, Q., Wang, R., Zhang, M. & Zhou, Y. (2017). Self-Plasticization of PVC materials via chemical modification of mannich base of cardanol butyl ether. ACS Sustain. Chem. & Engin., 5(8), 6665–6673. DOI: 10.1021/acssuschemeng.7b00900.
  • 10. Arrieta, M.P., Samper, M.D., Jiménez-López, M., Aldas, M. & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196–204. DOI: 10.1016/j.indcrop.2017.02.009.
  • 11. Feng, G., Hu, L., Ma, Y., Jia, P., Hu, Y., Zhang, M. & Zhou, Y. (2018). An efficient bio-based plasticizer for poly (vinyl chloride) from waste cooking oil and citric acid: synthesis and evaluation in PVC films. J. Cleaner Prod., 189, 334–343. DOI: 10.1016/j.jclepro.2018.04.085.
  • 12. Cai, D.L., Yue, X., Hao, B. & Ma, P.C. (2020). A sustainable poly (vinyl chloride) plasticizer derivated from waste cooking oil. J. Cleaner Prod., 274, 122781. DOI:10.1016/j.jclepro.2020.122781.
  • 13. Fenollar, O., García, D., Sánchez, L., López, J. & Balart, R. (2009). Optimization of the curing conditions of PVC plastisols based on the use of an epoxidized fatty acid ester plasticizer. Europ. Polym. J., 45(9), 2674–2684. DOI: 10.1016/j.eurpolymj.2009.05.029.
  • 14. Hu, Y., Ma, Y., Zhou, J., Bei, Y., Hu, F., Kou, Z. & Jia, P. (2022). Branched plasticizers derived from eugenol via green polymerization for low/non-migration and externally/internally plasticized polyvinyl chloride materials. Arabian J. Chem., 104331. DOI: 10.1016/j.arabjc.2022.104331.
  • 15. Jia, P., Ma, Y., Xia, H., Zheng, M., Feng, G., Hu, L. & Zhou, Y. (2018). Clean synthesis of epoxidized tung oil derivatives via phase transfer catalyst and thiol–ene reaction: a detailed study. ACS Sustain. Chem. & Engin., 6(11), 13983–13994. DOI: 10.1021/acssuschemeng.8b02446.
  • 16. Meiorin, C., Aranguren, M.I. & Mosiewicki, M.A. (2015). Polymeric networks based on tung oil: Reaction and modification with green oil monomers. Europ. Polym. J., 67, 551–560. DOI: h10.1016/j.eurpolymj.2015.01.005.
  • 17. Ma, Y., Bei, Y., Zhang, M., Song, F., Hu, F., Kou, Z.,& Jia, P. (2022). Synthesis of woody oil-based plasticizer via solvent--free Diels-Alder reaction and its biodegradability. Ind. Crops and Prod., 188, 115646. DOI: 10.1016/j.indcrop.2022.115646.
  • 18. Ng, W.P.Q., Lim, M.T., bt Mohamad Izhar, S.M., Lam, H.L. & Yusup, S. (2014). Overview on economics and technology development of rubber seed utilisation in Southeast Asia. Clean Technol. Environ. Policy, 16, 439–453. DOI: 10.1007/s10098-013-0667-6.
  • 19. Li, H., Wang, X., Chu, H. & Yao, X. (2022). Synthesis of a polyester plasticizer from rubber seed oil for polyvinyl chloride. Pol. J. Chem. Technol., 24(4). DOI: 10.2478/pjct-2022-0023.
  • 20. Chu, H., Li, H., Sun, X. & Zhang, Y. (2023). Phosphorus Containing Rubber Seed oil as a Flame Retardant Plasticizer for Polyvinyl Chloride. J. Renewable Mater., 11(4), 1731–1743. DOI: 10.32604/jrm.2022.024160.
  • 21. Jia, P., Zhang, M., Liu, C., Hu, L., Feng, G., Bo, C. & Zhou, Y. (2015). Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. Rsc Advances, 5(51), 41169–41178. DOI: 10.1039/C5RA05784A.
  • 22. Tan, J., Fu, Q., Qu, Y., Wang, F., Wang, W., Wang, F. & Zhu, X. (2021). Direct transformation of fatty acid-derived monomers from dimer acid manufacturing into valuable bio--plasticizers with high plasticization and compatibilization. J. Cleaner Prod., 289, 125821. DOI: 10.1016/j.jclepro.2021.125821.
  • 23. Sim, M.J., Cha, S.H. & Lee, J.C. (2021). Enhancement of flame retardancy and physical property for poly (vinyl chloride) having renewable cardanol-based self-polymerizable phosphonate under heat treatment process. Pol. Testing, 100, 107266. DOI: 10.1016/j.polymertesting.2021.1072.
  • 24. Chi, Z., Guo, Z., Xu, Z., Zhang, M., Li, M., Shang, L. & Ao, Y. (2020). A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: synthesis, flame-retardant behavior and mechanism. Polym. Degradat. Stability, 176, 109151. DOI: 10.1016/j.polymdegradstab.2020.109151.
  • 25. William Coaker, A. (2003). Fire and flame retardants for PVC. J. Vinyl Additive Technol., 9(3), 108–115.DOI:10.1002/vnl.10072.
  • 26. Zhang, L., Wang, Q., Jian, R. K. & Wang, D. Y. (2020). Bioinspired iron-loaded polydopamine nanospheres as green flame retardants for epoxy resin via free radical scavenging and catalytic charring. J. Mater. Chem. A, 8(5), 2529–2538. DOI: 10.1039/c9ta11021f.
  • 27. Hu, Y., Bei, Y., Bo, C., Hu, F. L., Hu, L., Zhou, Y. & Jia, P. (2023). Biodegradable Plasticizer from Cardanol via Acid-Free Catalysis of Quaternary Ammonium Phosphotungstate. ACS Sustain. Chem. & Engin. DOI: 10.1021/acssuschemeng.2c05503.
  • 28. Bodaghi, A. (2020). An overview on the recent developments in reactive plasticizers in polymers. Polym. Adv. Technol., 31(3), 355–367. DOI: 10.1002/pat.4790.
  • 29. Ma, Y., Song, F., Hu, Y., Kong, Q., Liu, C., Rahman, M.A. & Jia, P. (2020). Highly branched and nontoxic plasticizers based on natural cashew shell oil by a facile and sustainable way. J. Cleaner Prod., 252, 119597. DOI: 10.1016/j.jclepro.2019.119597.
  • 30. Ma, Y., Liao, S., Li, Q., Guan, Q., Jia, P. & Zhou, Y. (2020). Physical and chemical modifications of poly (vinyl chloride) materials to prevent plasticizer migration-Still on the run. Reactive Funct. Polym., 147, 104458. DOI: 10.1016/j.reactfunctpolym.2019.104458.
  • 31. Ma, Y., Song, F., Kong, Q., Li, Q., Jia, P. & Zhou, Y. (2020). Preparation and performance of bio-based polyol ester from one-pot synthesis of castor oil as nontoxic poly (vinyl chloride) plasticizer. J. Polym. Environ., 28, 2101–2107. DOI: 10.1007/s10924-020-01754-3.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d55c041f-7a98-4789-b33a-548d886f0f2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.