PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cross-Antenna Polyphase Interleaving and Inversion scheme to reduce the PAPR of MIMO-FBMC/OQAM system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Filter Bank Multi-Carrier with Offset Quadrature Amplitude symbol mapping called as FBMC/OQAM is presented as a potential successor of Orthogonal Frequency Division Multiplexing OFDM. Combined with Multiple-Input Multiple-Output (MIMO), MIMO-FBMC/OQAM is a promising modula-tion scheme for high performance broadband wireless communi-cations. However, one major drawback of MIMO-FBMC/OQAM is the high peak-to-average power ratio (PAPR) of the output signals. Latinovic et al. Proposed a PAPR reduction method called Polyphase Interleaving and Inversion (PII) for MIMO-OFDM systems under the use of the space-frequency block coding (SFBC) [1]. In this investigation, we suggest two schemes called Cross Antenna Polyphase Interleaving and Inversion 1 and 2 (CAPII1/(CAPII2) PAPR reduction schemes for Space Frequency Block Coding MIMO-FBMC systems which consequently utilizes additional degrees of freedom by employing multiple antennas and generating more patterns leading to more signal candidates to transmit, while requiring a limited amount of side information. The simulation results show that both the proposed CAPII schemes experience remarkable gain in PAPR.
Twórcy
  • University of Carthage, School of Telecommunication (Sup’Com)
  • University of Carthage, School of Telecommunication (Sup’Com)
Bibliografia
  • [1] Z. Latinovic and Y. Bar-Ness, “Sfbc mimo-ofdm peak-to-average power ratio reduction by polyphase interleaving and inversion,” IEEE communications letters, vol. 10, no. 4, pp. 266-268, 2006. [Online]. Available: https://doi.org/10.1109/LCOMM.2006.1613742.
  • [2] S. M. Nejakar, P. G. Benakop, and R. Sharanabasappa, “Orthogonal frequency division multiplexing modulation scheme for 4g/5g cellular network,” European Journal of Advances in Engineering and Technology, vol. 2, no. 3, pp. 46-50, 2015.
  • [3] J. Huang, F. Ruan, M. Su, X. Yang, S. Yao, and J. Zhang, “Analysis of orthogonal frequency division multiplexing (ofdm) technology in wireless communication process,” in 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). IEEE, 2016, pp. 122-125. [Online]. Available: https://doi.org/10.1109/ICASID.2016.7873931.
  • [4] J. Lian, Y. Gao, P. Wu, and D. Lian, “Orthogonal frequency division multiplexing techniques comparison for underwater optical wireless communication systems,” Sensors, vol. 19, no. 1, p. 160, 2019. [Online]. Available: https://doi.org/10.3390/s19010160.
  • [5] D. Zhang, A. Festag, and G. P. Fettweis, “Performance of generalized frequency division multiplexing based physical layer in vehicular communications,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9809-9824, 2017. [Online]. Available: https://doi.org/10.1109/TVT.2017.2723729.
  • [6] Y. A. Jawhar, R. A. Abdulhasan, and K. N. Ramli, “Influencing parameters in peak to average power ratio performance on orthogonal frequency-division multiplexing system,” ARPN journal of engineering and applied sciences, vol. 11, no. 6, pp. 4322-4332, 2016. [Online]. Available: https://doi.org/10.1109/TELFOR.2014.7034415.
  • [7] B. Farhang-Boroujeny, “Filter bank multicarrier modulation: A waveform candidate for 5g and beyond,” Advances in Electrical Engineering, vol. 2014, 2014. [Online]. Available: https://doi.org/10.1155/2014/482805.
  • [8] D. Levy and A. Reichman, “Filter bank multi carrier modulation performance,” in 2017 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). IEEE, 2017, pp. 1-6. [Online]. Available: https://doi.org/10.1109/COMCAS.2017.8244724.
  • [9] G. Casu, L. Tut˘a, I. Nicolaescu, and C. Moraru, “Some aspects about the advantages of using mimo systems,” in 2014 22nd Telecommunications Forum Telfor (TELFOR). IEEE, 2014, pp. 320-323. [Online]. Available: https://doi.org/10.1109/TELFOR.2014.7034415.
  • [10] P. Singh, E. Sharma, K. Vasudevan, and R. Budhiraja, “Cfo and channel estimation for frequency selective mimo-fbmc/oqam systems,” IEEE Wireless Communications Letters, vol. 7, no. 5, pp. 844-847, 2018. [Online]. Available: https://doi.org/10.1109/LWC.2018.2830777.
  • [11] H. Wang, “Sparse channel estimation for mimo-fbmc/oqam wireless communications in smart city applications,” IEEE Access, vol. 6, pp. 60 666-60 672, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2875245.
  • [12] Y. Medjahdi, S. Traverso, R. Gerzaguet, H. Shaiek, R. Zayani, D. Demmer, R. Zakaria, J.-B. Dor´e, M. B. Mabrouk, D. Le Ruyet et al., “On the road to 5g: Comparative study of physical layer inmtc context,” IEEE Access, vol. 5, pp. 26 556-26 581, 2017. [Online]. Available: https://doi.org/10.1109/ACCESS.2017.2774002.
  • [13] J. Nadal, C. A. Nour, and A. Baghdadi, “Design and evaluation of a novel short prototype filter for fbmc/oqam modulation,” IEEE access, vol. 6, pp. 19 610-19 625, 2018. [Online]. Available: https://doi.org/10.1109/ACCESS.2018.2818883.
  • [14] R. Nissel, S. Schwarz, and M. Rupp, “Filter bank multicarrier modulation schemes for future mobile communications,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 8, pp. 1768-1782, 2017. [Online]. Available: https://doi.org/10.1109/JSAC.2017.2710022.
  • [15] A. Skrzypczak, J. Palicot, and P. Siohan, “Ofdm/oqam modulation for efficient dynamic spectrum access,” International Journal of Communication Networks and Distributed Systems, vol. 8, no. 3-4, pp. 247-266, 2012. [Online]. Available: https://doi.org/10.1504/IJCNDS.2012.046360.
  • [16] A. Boudjelkha, H. Merah, and A. Khelil, “Multi-antennas papr reduction for fbmc/oqam system,” International Journal of Sensors Wireless Communications and Control, vol. 13, no. 2, pp. 108-116, 2023. [Online]. Available: https://doi.org/10.2174/2210327913666230512163935.
  • [17] A. Agarwal and R. Sharma, “Review of different papr reduction techniques in fbmc-oqam system,” Internet of Things and Big Data Applications: Recent Advances and Challenges, pp. 183-191, 2020. [Online]. Available: https://doi.org/DOI:10.1007/978-3-030-39119-514.
  • [18] H. Wang, X. Wang, L. Xu, and W. Du, “Hybrid papr reduction scheme for fbmc/oqam systems based on multi data block pts and tr methods,” IEEE Access, vol. 4, pp. 4761-4768, 2016. [Online]. Available: https://doi.org/10.1109/ACCESS.2016.2605008.
  • [19] X. Cheng, D. Liu, W. Shi, Y. Zhao, Y. Li, and D. Kong, “A novel conversion vector-based low-complexity slm scheme for papr reduction in fbmc/oqam systems,” IEEE Transactions on Broadcasting, vol. 66, no. 3, pp. 656-666, 2020. [Online]. Available: https://doi.org/10.1109/TBC.2020.2977548.
  • [20] M. Laabidi, R. Zayani, D. Roviras, and R. Bouallegue, “Papr reduction in fbmc/oqam systems using active constellation extension and tone reservation approaches,” in 2015 IEEE Symposium on Computers and Communication (ISCC). IEEE, 2015, pp. 657-662. [Online]. Available: https://doi.org/10.1109/ISCC.2015.7405589.
  • [21] M. Laabidi and R. Bouallegue, “Three implementations of the tone reservation papr reduction scheme for the fbmc/oqam system,” IET Communications, vol. 13, no. 7, pp. 918-925, 2019. [Online]. Available: https://doi.org/10.1049/iet-com.2018.5336.
  • [22] R. Gopal and S. K. Patra, “Combining tone injection and companding techniques for papr reduction of fbmc-oqam system,” in 2015 Global Conference on Communication Technologies (GCCT). IEEE, 2015, pp. 709-713. [Online]. Available: https://doi.org/10.1109/GCCT.2015.7342756.
  • [23] X. Liu, X. Ge, H. Zhou, T. He, and G. Qiao, “Papr reduction for fbmc-oqam system with laplace based linear companding transform,” IEEE Communications Letters, 2023. [Online]. Available: https://doi.org/10.1109/LCOMM.2023.3335911.
  • [24] I. A. Shaheen, A. Zekry, F. Newagy, and R. Ibrahim, “Papr reduction of fbmc/oqam systems based on combination of dst precoding and a-law nonlinear companding technique,” in 2017 International Conference on Promising Electronic Technologies (ICPET). IEEE, 2017, pp. 38-42. [Online]. Available: https://doi.org/10.1109/ICPET.2017.13.
  • [25] ——, “Proposed new schemes to reduce papr for stbc mimo fbmc systems,” simulation, vol. 6, no. 9, 2017.
  • [26] H. Merah, M. Mesri, K. Tahkoubit, and L. Talbd, “Papr reduction in mimo (2×2)-fbmc-oqam systems using attenuating qam symbols,” in 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA), 2019, pp. 1-5. [Online]. Available: https://doi.org/10.1109/ISPA48434.2019.8966794.
  • [27] I. A. Shaheen, A. Zekry, F. Newagy, and R. Ibrahim, “Papr reduction using combination of sas preprocessed and wht precoding for mimo system of fbmc/oqam transceiver,” International Journal of Engineering & Technology, vol. 7, no. 4, pp. 3803-3809, 2018. [Online]. Available: https://doi.org/10.14419/ijet.v7i4.15899.
  • [28] A. Boudjelkha, A. Khelil, and H. Merah, “Repeated clipping filtering with nonlinear companding for papr reduction in mimo fbmc/oqam system.” International Journal of Intelligent Engineering & Systems, vol. 16, no. 4, 2023. [Online]. Available: https://doi.org/10.22266/ijies2023.0831.51.
  • [29] A. Sahin, I. Guvenc, and H. Arslan, “A survey on multicarrier communications: Prototype filters, lattice structures, and implementation aspects,” IEEE communications surveys & tutorials, vol. 16, no. 3, pp. 1312-1338, 2013. [Online]. Available: https://doi.org/10.1109/SURV.2013.121213.00263.
  • [30] deliverable 2.1, “Transmit/receive processing (single antenna),” document ICT-211887 PHYDYAS, vol. Jul, 2008.
  • [31] J. Nadal, C. A. Nour, A. Baghdadi, and H. Lin, “Hardware prototyping of fbmc/oqam baseband for 5g mobile communication systems,” in RSP 2014: IEEE International Symposium on Rapid System Prototyping, 2014, pp. 135-141.
  • [32] M. Bellanger, “Physical layer for future broadband radio systems,” in 2010 IEEE radio and wireless symposium (RWS). IEEE, 2010, pp. 436-439. [Online]. Available: https://doi.org/10.1109/RWS.2010.5434093.
  • [33] S. S. K. C. Bulusu, “Performance analysis and papr reduction techniques for filter-bank based multi-carrier systems with non-linear power amplifiers,” Ph.D. dissertation, Conservatoire national des arts et metiers CNAM, 2016.
  • [34] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on selected areas in communications, vol. 16, no. 8, pp. 1451-1458, 1998.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d55b3b85-0716-4f2b-8b59-519432caa531
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.