PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of aqueous sodium chloride solutions on operational properties of epoxy coatings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main goal of the research presented in the article is to assess the impact of the destruction (degradation) of epoxy coatings, caused by the influence of a 25% aqueous solution of sodium chloride (brine), on the operational properties that determine the coatings reliability (durability). Samples of two-layer epoxy coatings (obtained from powder paints) were aged by immersing them in brine for a maximum period of 1680 h. The following criteria were used to assess the operational properties of the coatings: thickness, roughness and surface morphology, hardness, water absorption (mass increase), surface free energy. The FTIR and DSC tests performed showed a progressive development of the oxidation processes of the epoxy with the ageing period. The long-term impact of the brine resulted in the destruction of the coatings in the form of: craters, grooves, microcracks, including silver cracks. The contact of the coatings with brine also increased their: surface roughness (Ra, Rz, Rmax), thickness, mass, surface free energy, and decreased hardness and heat resistance.
Rocznik
Strony
629--640
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • University of Technology and Humanities in Radom, Faculty of Mechanical Engineering, ul. Malczewskiego 29, 26-600 Radom, Poland
  • University of Technology and Humanities in Radom, Faculty of Mechanical Engineering, ul. Malczewskiego 29, 26-600 Radom, Poland
Bibliografia
  • 1. Bai W. Ma Y., Meng M., Ying Li Y. The influence of graphene on the cathodic protection performance of zinc-rich epoxy coatings, Progress in Organic Coatings 2021; 161: Article 106456, https://doi.org/10.1016/j.porgcoat.2021.106456.
  • 2. Baier A, Zolkiewski S. Initial research of epoxy and polyester warp laminates testing on abrasive wear used in car sheathing. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2013; 15 (1): 37–43 (no paper link available).
  • 3. Bauer F., Decker U., Naumov S., Riedel C. Photoinitiator-free UV curing and matting of acrylatebased nanocomposite coatings: Part 3, Progress in Organic Coatings 2014; 77 (6): 1085-1094, https://doi.org/10.1016/j.porgcoat.2014.03.013.
  • 4. Buchacz A, Baier A, Herbus K, Ociepka P, Grabowski L, Sobek M. Compression studies of multi-layered composite materials for the purpose of verifying composite panels model used in the renovation process of the freight wagon’s hull. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 137–146, http://dx.doi.org/10.17531/ein.2018.1.18.
  • 5. Chen L., Yu Z., Yin D., Cao K., Xie C., Zhu L., Jiang Y. Preparation and anticorrosion properties of GO-Ce-MOF nanocomposite coatings, Applied Polymer 2022; 139 (5): Article 51571, DOI: 10.1002/app.51571.
  • 6. Daneshifar M. H., Sajjadi S.A., Zebarjad S., Mohammadtaher M., Abbasi M., Mossaddegh K. The effects of fillers on properties of automotive nanocomposite clear coats: Type, content and surface functionalization, Progress in Organic Coatings 2019; 134: 33–39, https://doi.org/10.1016/j.porgcoat.2019.05.001.
  • 7. Das S., Pandey P., Mohanty S., Nayak S. Effect of nanosilica on the physicochemical, morphological and curing characteristics of transesterified castor oil based polyurethane coatings, Progress in Organic Coatings 2016; 97: 233-243, https://doi.org/10.1016/j.porgcoat. 2016.04.012.
  • 8. Deflorian, F., Fedel, M., Dirè, S., Tagliazucca, V., Bongiovanni, R., Vescovo, L., Minelli, M., & De Angelis, M. G. Study of the effect of organically functionalized silica nanoparticles on the properties of UV curable acrylic coatings. Progress in Organic Coatings 2011, 72(1-2), 44-51, https://doi.org/10.1016/j.porgcoat.2011.01.002
  • 9. Fu S.-Y., Feng X.-Q., Lauke B., Mai Y.-W. Effects of particle size, particle matrix interface adhesion and particle loading on mechanical properties, Composites 2008; Part B, 39: 933-961, https://doi.org/10.1016/j.compositesb.2008.01.002.
  • 10. Golru S. S., et al. Studying the influence of nano-Al2O3 particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050, Progress in Organic Coatings 2014; 77: 1391-1399, https://doi.org/10.1016/j.porgcoat.2014.04.017.
  • 11. Knowles T. The new toolbox. Nanotechnology in paints and coatings, European Coatings Journal 2006; 3: 16-18 (no paper link available).
  • 12. Kotnarowska D. Kinetics of wear of epoxide coating modified with glass microspheres and exposed to the impact of alundum particles, Progress in Organic Coatings 1997; 31: 325-330, https://doi.org/10.1016/S0300-9440(97)00090-8.
  • 13. Kotnarowska D. Influence of ultraviolet radiation and aggressive media on epoxy coating degradation, Progress in Organic Coatings 1999; 37: 149-159, https://doi.org/10.1016/S0300-9440(99)00070-3.
  • 14. Kotnarowska D. Effect of nanofillers on wear resistance of polymer coatings, Solid State Phenomena 2009; 144: 285-290. (Pt. B of Diffusion and Defect Data - Solid State Data), https://doi.org/10.4028/www.scientific.net/SSP.144.285.
  • 15. Kotnarowska D. Epoxy coating destruction as a result of sulphuric acid aqueous solution action, Progress in Organic Coatings 201; 67: 324-328, https://doi.org/10.1016/j.porgcoat. 2009.10.026.
  • 16. Kotnarowska D. Analysis of polyurethane top-coat destruction influence on erosion kinetics of polyurethane-epoxy coating system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2019; 21 (1): 103–114, http://dx.doi.org/10.17531/ein.2019.1.12.
  • 17. Kotnarowska D. Impact of operational environment on the protective and decorative properties of epoxy coatings, Ochrona przed Korozją (Corrosion Protection) 2013; 9: 372-383 (no paper link available).
  • 18. Kotnarowska D. Destruction of Epoxy Coatings under the Influence of Sodium Chloride Water Solutions, Solid State Phenomena 2015; 220:609-614, https://doi.org/10.4028/ www.scientific.net/SSP.220-221.609.
  • 19. Kotnarowska D. The influence of battery acid on the destruction of acrylic coatings of car bodies, Coatings 2021; 11 (8): 967-987, https://doi.org/10.3390/coatings11080967.
  • 20. Kozhukharov S., Kozhukharov V., Wittmar M., Schem M., Aslan M., Caparrotti H., Veith M. Protective abilities of nanocomposite coatings containing Al2O3 nano-particles loaded by CeCl3, Progress in Organic Coatings 2011; 71: 198-205, https://doi.org/10.1016/j.porgcoat.2011.02.013.
  • 21. Latthe S. S., at al. Self – cleaning superhydrophobic coatings: Potential industrial applications, Progress in Organic Coatings 2019; 128: 52-58, https://doi.org/10.1016/j.porgcoat.2018.12.008.
  • 22. Le T. T., Nguyen T. V., Nguyen T. A., Thanh T., Nguye H. Thermal, mechanical and antibacterial properties of water-based acrylic Polymer/SiO2–Ag nanocomposite coating, Materials Chemistry and Physics 2019; 232,: 362-366, https://doi.org/10.1016/j.matchemphys.2019.05.001.
  • 23. Leder G., Ladwig T., Valter V., Frahn S., Meyer J. New effects of fumed silica in modern coatings, Progress in Organic Coatings 2002; 45:139-144, https://doi.org/10.1016/S0300-9440(02)00049-8.
  • 24. Lü N., Lü X., Jin X., Lü C. Preparation and characterization of UV-curable ZnO/polymer nanocomposite films, Polymer International 2006;56: 138-143, DOI: 10.1002/pi.2126.
  • 25. Maganty S., et al. Enhanced mechanical properties of polyurethane composite coatings through nanosilica addition, Progress in Organic Coatings 2016; 90: 243-251, https://doi.org/ 10.1016/j.porgcoat.2015.10.016.
  • 26. Matin E., Attar M. M., Ramezanzadeh B. Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate, Progress in Organic Coatings 2015; 78: 395-403, https://doi.org/10.1016/j.porgcoat.2014.07.004.
  • 27. Narisawa I. The strength of polymeric materials, OHMSHA Publisher, Tokyo, 1982, 397 p. (no paper link available).
  • 28. Nguyen T.N. L., et al. Antimicrobial activity of acrylic polyurethane/Fe3O4-Ag nanocomposite coating, Progress in Organic Coatings 2019; 132:15-20, https://doi.org/10.1016/j.porgcoat. 2019.02.023.
  • 29. Nguyen T.V. Stability of acrylic polyurethane coatings under accelerated aging tests and natural outdoor exposure: The critical role of the used photo-stabilizers, Progress in Organic Coatings 2018; 124: 137-146, https://doi.org/10.1016/j.porgcoat.2018.08.013.
  • 30. Pieniak D., Niewczas A., Kordos P. Influence of thermal fatigue and ageing on the microhardness of polymer-ceramic composites for biomedical applications, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 14 (2): 181-184 (no paper link available).
  • 31. Pilotek S., Tabellion F. Nanoparticles in coatings. Tailoring properties to application, European Coatings Journal 2005; 4: 170-177 (no paper link available).
  • 32. Prak L., Sumranwanich T., Tangtermsirikul S. Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment, Journal of Adhesion Science 2022; Published online: 22 Jan 2022, DOI:10.1080/01694243.2022.2026707.
  • 33. Pulikkalparambil H., Parameswaranpillai J., Siengchin S., Pionteck J. UV light triggered self-healing of green epoxy coatings, Construction and Building Materials 2021; 305: Article 124725, https://doi.org/10.1016/j.conbuildmat.2021.124725.
  • 34. Report: Epoxy Surface Coatings Market Size, Industry Analysis Report, Regional Outlook, Application Development, Price Trend, Competitive Market Share & Forecast. Global Market Insights 2022 – 2028 (no paper link available).
  • 35. Report: Global Powder Coatings Market Outlook Report 2021-2026: Focus on Thermoset Resin, Epoxy, Epoxy Polyester, Polyester, Polyurethane, Thermoplastic Resin. Research And Markets 2021, https://www.researchandmarkets.com/r/ux993b.
  • 36. Szudrowicz M. Layered composite increasing the resistance of patrol and intervention vehicles to the impact of improvised explosive devices (IED) from below. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2018; 20 (1): 9–15, http://dx.doi.org/10.17531/ein.2018.1.2.
  • 37. Wang Y., Lim S., Luo J.L., Xu Z.H. Tribological and corrosion behaviors of Al2O3/polymer nanocomposite Coatings Wear 2006; 260: 976-983, https://doi.org/10.1016/j.wear. 2005.06. 013.
  • 38. Wojciechowski K., Zukowska G., Z, Korczagin I, Malanowski P. Effect of TiO2 on UV stability of polymeric binder films used in waterborne facade paints, Progress in Organic Coatings 2015; 85: 123-130, https://doi.org/10.1016/j.porgcoat.2015.04.002.
  • 39. Yue Q., Wu L., Lv J., Wang A., Ding R., Wang Y. Study on anti-corrosion performance and mechanism of epoxy coatings based on basalt flake loaded aniline trimer, Colloid and Interface Science Communications 2021; 45: Article 100505, DOI 10.1016/j.colcom.2021.100505.
  • 40. Zhang W., Li L., Yao S., Zheng G. Corrosion protection properties of lacquer coatings on steel modified by carbon black nanoparticles in NaCl solution, Corrosion Science 2007; 49: 654-661, https://doi.org/10.1016/j.corsci.2006.06.017.
  • 41. Zubielewicz M., Królikowska A. The influence of ageing of epoxy coatings on adhesion of polyurethane topcoats and protective properties of coating systems, Progress in Organic Coatings 2009; 66: 129-136, https://doi.org/10.1016/j.porgcoat.2009.06.014.
  • 42. Zyska B. (red.), Żakowska Z. (red.), Mikrobiologia Materiałów., Wydawnictwo Politechniki Łódzkiej, Łódź 2005, ISBN 83-7283-150-5, http://hdl.handle.net/11652/1807.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d55a80a9-f051-447a-b7bb-2222e5c42538
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.