PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas sensors based on metal oxide nanoparticles and their application for environmentally hazardous gases detection – a mini-review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Czujniki na bazie nanocząstek tlenków metali i ich zastosowanie w detekcji gazów niebezpiecznych dla środowiska
Języki publikacji
EN
Abstrakty
EN
Hazardous gases have adverse effects on living organisms and the environment. They can be classified into two categories, i.e. toxic gases (e.g. H2 S, SO2 , CO, NO2 , NO and NH3 ) and greenhouse gases (e.g. N2 O, CH4 and CO2 ). Moreover, their presence in confined areas may lead to fire accidents, cause serious health problems or even death. Therefore, monitoring of these substances with gas sensors allows assessing the quality of the atmosphere, helps avoiding accidents and saves lives. Metal oxide semiconductor gas sensors (MOS) are one of the most popular choices for these applications owing to their numerous advantages, i.e. high sensitivity, long lifetime and short response time. However, these devices have their limitations as well. They exhibit baseline drift, sensor poisoning and poor selectivity. Although much has been done in order to deal with those problems, the improvement of MOS sensors continues to attract researchers’ attention. The strict control of gas sensing materials preparation is one of the approaches that helps to improve MOS sensors performance. Nanomaterials have been found to be more suitable candidates for gas detection than materials designed at microscale. Moreover, it was found that the regular and ordered morphology of metal oxide nanostructures, their loading with noble metals, or the formation of heterojunctions can exert additional influence on the properties of these nanostructures and improve their gas sensing performance, which will be described in the following sections of this paper. Following a discussion of the operation principle of MOS sensors, a comprehensive review of the synthesis and application of metal oxide nanoparticles in the construction of the MOS sensors dedicated for environmentally hazardous gases is presented. The paper discusses also present issues and future research directions concerning application of nanotechnology for gas sensing.
PL
Niebezpieczne gazy mają niekorzystny wpływ na organizmy żywe i środowisko. Zaliczamy do nich gazy toksyczne (np. H2 S, SO2 , CO, NO2 , NO i NH3 ), gazy cieplarniane (np. N2 O, CH4 i CO2 ). Co więcej, ich obecność w zamkniętych pomieszczeniach może doprowadzić do pożarów, spowodować poważne problemy zdrowotne, a nawet doprowadzić do śmierci. Monitorowanie tych substancji za pomocą czujników gazowych może pomóc uniknąć wypadków i uratować życie. Półprzewodnikowe czujniki gazowe na bazie tlenków metalu (MOS) są jednymi z najpopularniejszych w tych zastosowaniach ze względu na swoje liczne zalety, takie jak wysoka czułość, długa żywotność i krótki czas odpowiedzi. Urządzenia te mają również swoje ograniczenia, tj. wykazują dryft odpowiedzi w czasie, mogą ulec dezaktywacji i charakteryzują się słabą selektywnością, dlatego nadal prowadzone są badania nad poprawą parametrów czujników MOS. Ścisła kontrola procesu przygotowania materiałów czułych jest jedną z metod pozwalających na poprawę wydajności czujników MOS. Stwierdzono, że nanomateriały są bardziej odpowiednie do wykrywania gazów niż ich odpowiedniki zaprojektowane w mikroskali. Stwierdzono również, że regularna i uporządkowana morfologia nanostruktur tlenków metali, pokrywanie ich nanocząstkami metali szlachetnych lub tworzenie heterozłączy może poprawiać skuteczność wykrywania gazów. W przedstawionej pracy dokonano przeglądu metod syntezy i zastosowania nanocząstek tlenków metali w konstrukcji czujników gazów niebezpiecznych dla środowiska. W artykule omówiono również aktualne problemy i przyszłe kierunki badań nad zastosowaniem nanotechnologii do detekcji gazów.
Rocznik
Tom
Strony
7—27
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
  • Department of Environment Protection Engineering, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
Bibliografia
  • 1. Abid, N., Khan, A.M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., Maqbool, M., (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597.
  • 2. An, F., Zhou, A.F., Feng, P.X., (2020). Effect of Tungsten Oxide Nanostructures on Sensitivity and Selectivity of Pollution Gases. Sensors, 20(17), 4801.
  • 3. Arafat, M.M., Dinan B., Akbar S.A., Haseeb A.S.M.A., (2012). Gas sensors based on one dimensional nanostructured metal-oxides: a review. Sensors 12, pp. 7207–7258.
  • 4. Arunkumar, S., Hou, T., Kim, Y.-B., Choi, B., Park, S.H., Jung, S., Lee D.-W., (2017). Au Decorated ZnO hierarchical architectures: Facile synthesis, tunable morphology and enhanced CO detection at room temperatur. Sensors and Actuators B: Chemical, 243, 990–1001.
  • 5. Barsan, N., Schweizer-Berberich, M., Göpel, W., (1999). Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius’ Journal of Analytical Chemistry, 365, 287–304.
  • 6. Cui, G., Gao L., Yao, B., Wang, S., Zhang, P., Zhang, M., (2013). Electrochemistry of CuO/In2O3 p–n heterojunction nano/microstructure array with sensitivity to H2 at and below room-temperature. Electrochem. Commun., 30, pp. 42–45.
  • 7. Chen, Y.J., Xiao, G., Wang, T.S., Zhang, F., Ma, Y., Gao, P., Zhu, C.L., Zhang, E., Xu, Z. and Li, Q.H., (2011). MoO3/TiO2 core/shell nanorods: controlled-synthesis and lowtemperature gas sensing properties. Sens. Actuators B, 155, pp. 270–277.
  • 8. Choi, M.S., Bang, J.H., Mirzaei, A., Oum, W., Na, H.G., Jin, C., Kim, S.S., Kim, H.W., (2019). Promotional effects of ZnO-branching and Au-functionalization on the surface of SnO2 nanowires for NO2 sensing. Journal of Alloys and Compounds, 786, pp. 27–39.
  • 9. Deb, B., Desai, S., Sumanasekera, G.U., Sunkara, M.K., (2007). Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films. Nanotechnology, 18, 285501.
  • 10. Dhall, S., Mehta, B.R., Tyagi, A.K., Sood, K., (2021). A review on environmental gas sensors: Materials and technologies. Sensors International, 2, 100116.
  • 11. Du, Y., Wang, W., Li, X., Zhao, J., Ma, J., Liu, Y., Lu, G., (2012). Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Materials Letters, 68, 168–170.
  • 12. Esfandiar, A., Ghasemi, S., Irajizad, A., Akhavan, O., Gholami, M.R., (2012). The decoration of TiO2 /reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing. International Journal of Hydrogen Energy, 3, pp. 15423–15432.
  • 13. Fine, G., Cavanagh, L., Afonja, A., Binions, R., (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors (Basel), 10, 5469–5502.
  • 14. Gurlo, A., Riedel, R., (2007). In situ and operando spectroscopy for assessing mechanisms of gas sensing. Angewandte Chemie International Edition, 46, 3826–3848.
  • 15. Ji, H., Zeng, W., Li, Y., (2019). Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale, 11, 22664–22684.
  • 16. Jiang, W. Xia, Y., Pan, A., Luo, Y., Su, Y., Zhao, S., Wang, T., Zhao, L., (2022). FacetDependent Gas Adsorption Selectivity on ZnO: A DFT Study. Chemosensors, 10(10):436.
  • 17. Jońca, J., Fajerwerg, K., Kahn, M., Menini, Ph., Sówka, I., Fau, P., Towards selective and sensitive detection of carbon monoxide with CuO/ZnO heterojunction nanocomposite prepared by an organometallic approach. Sensors and Transducers, (submitted).
  • 18. Jońca, J., Pawnuk, M., Arsen, A., Sówka, I., (2022a). Electronic Noses and Their Applications for Sensory and Analytical Measurements in the Waste Management Plants – A Review. Sensors, 22(4), 1510.
  • 19. Jońca, J., Pawnuk, M., Bezyk, Y., Arsen, A., Sówka, I., (2022b). Drone-assisted monitoring of atmosphere pollution – a comprehensive review, Sustainability, 14(18), 11516.
  • 20. Jońca, J., Ryzhikov, A., Kahn, M.L., Fajerwerg, K. Chapelle, A., Menini, P., Fau, P., (2016). SnO2 “Russian Doll” Octahedra Prepared by Metalorganic Synthesis: A New Structure for Sub-ppm CO Detection. Chemistry – A European Journal, 22, 10127–10135.
  • 21. Kahn, M.L., Monge, M., Colliere, V., Senocq, F., Maisonnat, B., Chaudret, B., (2005). Sizeand Shape-Control of Crystalline Zinc Oxide Nanoparticles: A New Organometallic Synthetic Method. Advanced Functional Materials, 15 (3), 458–468.
  • 22. Karmaoui, M., Lajaunie, L., Tobaldi, D.M., Leonardi, G., Benbayer, C., Arenalb, R., Labrincha, J.A., Neri, G., (2017). Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing. Applied Catalysis B: Environmental, 218, pp. 370–384.
  • 23. Keerthana, S., Rathnakannan, K., (2022). Hierarchical ZnO/CuO nanostructures for room temperature detection of carbon dioxide. Journal of Alloys and Compounds, 897, 162988.
  • 24. Keswani, A., Akselrod, H., Anenberg, S.C., (2022). Health and Clinical Impacts of Air Pollution and Linkages with Climate Change. NEJM Evidence, 1 (7), pp. 1–13.
  • 25. Kim, S., Park, S., Park, S., Lee, C., (2015). Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sensors Actuators B: Chemical, 209, 180–185.
  • 26. Kolahalam, L.A.,Viswanath, K.I.V., B.S., .Govindh, B., Reddy, V., Murthy, Y.L.N., (2019). Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings, 18 (6), 2182–2190.
  • 27. Korotcenkov, G., Brinzari, V., Golovanov, V., Blinov, Y., (2004). Kinetics of gas response to reducing gases of SnO2 films, deposited by spray pyrolysis. Sensors Actuators B Chemical, 98, 41–45.
  • 28. Lee, J., Lee, S.-H., Bak, S.-Y., Kim, Y., Woo, K., Lee, S., Lim, Y., Yi, M., (2019). Improved Sensitivity of α-Fe2 O3 Nanoparticle-Decorated ZnO Nanowire Gas Sensor for CO. Sensors, 19(8), 1903
  • 29. Li, N., Fan, Y., Shi, Y., Xiang, Q., Wang, X. and Xu, J., (2019). A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens. Actuators B, 294, pp. 106–115.
  • 30. Liu, S., Regulacio, M.D., Tee, S.Y., Khin, Y.W., Teng, C.P., Koh, L. D., Guan, G., Han M.-Y., (2016). Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles. The Chemical Record, 16, pp. 1965–1990.
  • 31. Liu, H., Zhou, J., Yu, L., Wang, Q., Liu, B., Li, P., Zhang, Y., (2021). High-sensitivity SO2 Gas Sensor Based on Noble Metal Doped WO3 Nanomaterials. International Journal Electrochemical Science, 16, 211240.
  • 32. Manawi, Y.M., Ihsanullah, Samara A., Al-Ansari, T., Atieh, M.A., (2018). A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials, 11(5), 822.
  • 33. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E., (2020). Environmental and health impacts of air pollution: a review. Front Public Health, 8, p. 14.
  • 34. Mhlongo, G.H., Motaung, D.E., Cummings, F.R., Swart, H.C., Ray, S.S., (2019). A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Scientific Reports, 9, 9881.
  • 35. Nakate, U.T., Bulakhe, R.N., Lokhande, C.D., Kale, S.N., (2016). Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Applied Surface Science, 371, pp. 224–230.
  • 36. Ruhland, B., Becker, T., Müller, G., (1998). Gas-kinetic interactions of nitrous oxides with SnO2 surfaces. Sensors Actuators B Chemical, 50, 85–94.
  • 37. Ryzhikov, A., Jońca, J., Kahn, M., Fajerwerg, K., Chaudret, B., Chapelle, A., Ménini, Ph., Shim, C.H., Gaudon, A., Fau, P., (2015). Organometallic Synthesis of ZnO Nanoparticles for Gas Sensing: Towards Selectivity Through Nanoparticles Morphology. Journal of Nanoparticle Research, 17(7), 280.
  • 38. Sun Y.F., Liu S.B., Meng F.L., Liu J.Y., Jin Z., Kong, L.T., Liu, J.H., (Feb 2012). Metal oxide nanostructures and their gas sensing properties: a review. Sensors (Basel, Switzerland), 27, 12(3):2610–2631.
  • 39. Vallejos S., Pizúrová N., Gràcia I., Sotelo-Vazquez C., Čechal J., Blackman C., Parkin I., and Cané C., (2016). ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor–Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Applied Materials & Interfaces, 8, 48, 33335–33342.
  • 40. Vander Wal, R.L., Berger G.M., Kulis M.J., Hunter G.W., Xu J.C., Evans L., (2009). Synthesis methods, microscopy characterization and device integration of nanoscale metal oxide semiconductors for gas sensing. Sensors (Basel), 9, pp. 7866–7902.
  • 41. Wang, J., Fan, S., Xi, Y., Yang, C., Komarneni, S., (2020). Room-temperature gas sensors based on ZnO nanorod/Au hybrids: Visible-light-modulated dual selectivity to NO2 and NH3 . Journal of Hazardous Materials, 381, 120919.
  • 42. Wang, X., Wang, Y., Tian, F., Liang, H., Wang, K., Zhao, X., Lu, Z., Jiang, K., Yang, L., Lou, X., (2015). From the surface reaction control to gas-diffusion control: the synthesis of hierarchical porous SnO2 microspheres and their gas-sensing mechanism. The Journal of Physical Chemistry C, 119, 15963–15976.
  • 43. Wang, Y., Cui, Y., Meng, X., Zhang, Z., Cao, J., (2021). A gas sensor based on Agmodified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4 . Surfaces and Interfaces, 24, 101110.
  • 44. Wang, Y., Qu, F., Liu, J., Wang, Y., Zhou, J., Ruan, S., (2005). Enhanced H2 S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sensors and Actuators B: Chemical 209, pp. 515–523.
  • 45. Weintraub, B., Zhou, Z,. Li, Y., Deng, Y., (2010). Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale, 2, 1573–1587.
  • 46. Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A., Phanichphant, S., (2011). Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical, 160(1), pp. 580–591.
  • 47. Xue, D., Wang, P., Zhang, Z., Wang, Y., Enhanced methane sensing property of flowerlike SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study. Sensors and Actuators B: Chemical, 296, 126710.
  • 48. Yang, S., Lei, G., Xu, H., Lan, Z., Wang, Z., Gu, H., (2021). Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials, 11, 1026.
  • 49. Yuan, K.-P., Zhu, L.-Y., Yang, J.-H., Hang, C.-Z., Tao, J.-J., Ma, H.-P., Jiang ,A.-H., Zhang, D., Lu ,H.-L., (2020). Precise preparation of WO3 @SnO2 core shell nanosheets for efficient NH3 gas sensing. Journal of Colloid and Interface Science, 568, pp. 81–88.
  • 50. Zeng, W., Liu, Y., Mei J., Tang C., Luo K., Li S., Zhan H., He Z., (2019). Hierarchical SnO2 –Sn3 O4 heterostructural gas sensor with high sensitivity and selectivity to NO2 . Sensors and Actuators B: Chemical, 301, 127010.
  • 51. Zhang, H., Zhou, H., Wang, Y., Li, S., Biswas, P., (2021). Mini Review on Gas-Phase Synthesis for Energy Nanomaterials. Energy Fuels, 35(1), 63–85.
  • 52. Zhou., Q., Zeng, W., Chen, W., Xu, L., Kumard, R., Umar, A., (2019). High sensitive and low-concentration sulfur dioxide (SO2 ) gas sensor application of heterostructure NiO-ZnO nanodisk. Sensors and Actuators B: Chemical, 298, 126870.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d55455b1-6233-4ef8-ab88-3a73f7ffbb14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.