
Opuscula Math. 35, no. 3 (2015), 371–395
http://dx.doi.org/10.7494/OpMath.2015.35.3.371 Opuscula Mathematica

ON THE EIGENVALUES
OF A 2× 2 BLOCK OPERATOR MATRIX

Mukhiddin I. Muminov and Tulkin H. Rasulov

Communicated by P.A. Cojuhari

Abstract. A 2×2 block operator matrix H acting in the direct sum of one- and two-particle
subspaces of a Fock space is considered. The existence of infinitely many negative eigenvalues
of H22 (the second diagonal entry of H) is proved for the case where both of the associated
Friedrichs models have a zero energy resonance. For the number N(z) of eigenvalues of H22

lying below z < 0, the following asymptotics is found

lim
z→−0

N(z)| log |z||−1 = U0 (0 < U0 <∞).

Under some natural conditions the infiniteness of the number of eigenvalues located respec-
tively inside, in the gap, and below the bottom of the essential spectrum of H is proved.
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1. INTRODUCTION

The number of eigenvalues of Hamiltonians (block operator matrices) on a Fock space
is one of the most actively studied objects in operator theory, in many problems
in mathematical physics and other related domains. An important problem in the
spectral analysis of these operators is to find out whether the set of eigenvalues located
inside, in the gap or in below the bottom of the essential spectrum is infinite. The
latter result is the remarkable phenomenon known as the Efimov effect in the spectral
theory of the three-particle Schrödinger operators. This property was discovered by
V. Efimov [7] and has been the subject of many papers [4, 6, 18, 23, 24, 26]. The first
mathematical proof of the existence of this effect was given by D. Yafaev [26], and
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A. Sobolev [23] established the asymptotics of the number of eigenvalues near the
threshold of the essential spectrum.

Perturbation problems for operators with embedded eigenvalues are generally chal-
lenging since the embedded eigenvalues cannot be separated from the rest of the
spectrum. Embedded eigenvalues occur in many applications arising in physics. In
quantum mechanics, for instance, eigenvalues of the energy operator correspond to
energy bound states that can be attained by the underlying physical system. If such an
eigenvalue is embedded in the continuous spectrum, it is of fundamental importance
to determine whether it, and therefore the corresponding bound state, persists after
perturbing the potential. Many works have been devoted to the study of embedded
eigenvalues of Schrödinger operators (see, for example [1,5,17,22]). In the paper [15],
it is shown that the embedded eigenvalues of the three-particle Schrödinger operator
on a one-dimensional lattice is infinite in the case where the masses of two particles
are infinite.

It is remarkable that the above mentioned operators describe the systems with
a conserved finite number of particles in continuous space or on a lattice. However,
in both cases, there exist problems with a non-conserved number of particles that
are more interesting in a certain sense. Such problems occur in statistical physics
[11, 12], solid state physics [13] and the theory of quantum fields [8]. Systems with a
non-conserved finite number of particles in continuous space were considered in [12,27].
Usually the Hamiltonians describing such systems in both cases can be expressed as
block operator matrices.

In the present paper we consider the 2 × 2 block operator matrix H acting in
the direct sum of one- and two-particle subspaces of a Fock space. The main aim of
this paper is to give a thorough mathematical treatment of the spectral properties
of H with emphasis on the infiniteness of the number of eigenvalues embedded in its
essential spectrum.

Let us briefly set up the problem. Denote by T3 the three-dimensional torus (the
cube (−π, π]3 with appropriately identified sides) and by H the direct sum of spaces
H1 := L2(T3) and H2 := L2((T3)2), that is, H := H1 ⊕ H2. The Hilbert spaces H1

and H2 are one-particle and two-particle subspaces of the Fock space F(L2(T3)) over
L2(T3), respectively.

We consider the block operator matrix H acting in the Hilbert space H given by

H :=

(
H11 H12

H∗12 H22

)

with the entries Hij : Hj → Hi, i ≤ j, i, j = 1, 2:

(H11f1)(p) = u(p)f1(p), (H12f2)(p) =

∫

T3

v(s)f2(p, s)ds,

(H22f2)(p, q) = w(p, q)f2(p, q)− µ1

∫

T3

f2(p, s)ds− µ2

∫

T3

f2(s, q)ds,

where H∗12 denotes the adjoint operator to H12 and fi ∈ Hi, i = 1, 2.
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Here µα, α = 1, 2, are positive real numbers, u(·) and v(·) are real-valued contin-
uous functions on T3 and the function w(·, ·) has the form

w(p, q) := l1ε(p) + l2ε(q) + l3ε(p+ q)

with li > 0, i = 1, 2, 3, and

ε(p) :=
3∑

i=1

(1− cos(2p(i))), p = (p(1), p(2), p(3)) ∈ T3. (1.1)

Under these assumptions the operator H is bounded and self-adjoint.
We remark that the operators H12 and H∗12 are called annihilation and creation

operators [8], respectively. In physics, an annihilation operator is an operator that
lowers the number of particles in a given state by one, a creation operator is an
operator that increases the number of particles in a given state by one, and it is the
adjoint of the annihilation operator.

Notice that the operator H22 is a model operator associated with a system of three
particles on Z3, where the role of the two-particle discrete Schrödinger operators is
played by a family of Friedrichs models with parameters hµα(p), µα > 0, α = 1, 2,
p ∈ T3. Under some smoothness assumptions:

(i) we describe the location and structure of the essential spectrum of H;
(ii) we find a value µ0

α of the parameter µα that for µα = µ0
α, α = 1, 2 the operator

H22 has infinitely many negative eigenvalues accumulating at zero (Efimov’s
effect). Moreover, we show that for the number N(z) of eigenvalues of H22 lying
below z < 0 = minσess(H22), the limit limz→−0N(z)| log |z||−1 = U0 exists for
some U0 ∈ (0;∞);

(iii) we find conditions which guarantee the infiniteness of the number of eigenvalues
located inside, in the gap, and below the bottom of the essential spectrum of H,
respectively.

We note that such type of operator matrices were considered in [16, 19, 21, 25]
where only its essential spectrum was investigated.

Now we are going to explain the importance of the problem and the meaning of the
dispersion function. In the physical literature, the function ε(·) given by the Fourier
series

ε(p) =
∑

s∈Z3

ε̂(s)ei(p,s), p ∈ T3

being a real-valued function on T3, is called the dispersion function of normal modes
associated with the free particle. Note that the Fourier coefficients of the function ε(·)
differ from the coefficients ε̂(·) by the factor (2π)3/2. Here

(p, s) := p(1)s(1)+p(2)s(2)+p(3)s(3), p = (p(1), p(2), p(3))∈T3, s = (s(1), s(1), s(1))∈Z3,
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and the series
∑
s∈Z3 ε̂(s) is assumed to be absolutely convergent. It is known that

if the dispersion function ε(·) is conditionally negative definite, then ε(·) admits a
(Levy-Khinchin) representation

ε(p) = ε(0) +
∑

s∈Z3

ε̂(s)(ei(p,s) − 1), p ∈ T3,

which is equivalent to the requirement that the Fourier coefficients ε̂(s) with s 6= 0
are non-positive.

If the (Fourier) coefficients ε̂(s) are defined by

ε̂(s) =





3, s = 0,

−1/2, |s| = 1,

0, otherwise,

then the corresponding dispersion function

ε(p) =

3∑

i=1

(1− cos p(i)) (1.2)

is a conditionally negative definite function and it has a unique non-degenerate min-
imum. We recall that threshold analysis for the operators hµα(p), α = 1, 2, with
dispersion function (1.2) are studied in [2], where the existence of Efimov’s effect
for H22 was proven and the corresponding asymptotics of the discrete spectrum was
obtained. What happens if the function ε(·) has non-degenerate minima at several
points? In order to justify the importance of this question we consider the Fourier
coefficients ε̂(s) defined by

ε̂(s) =





3, s = 0,

−1/2, s ∈ {(±2, 0, 0), (0,±2, 0), (0, 0,±2)},
0, otherwise.

Then the corresponding dispersion function ε(·) is of the form (1.1) with the
non-degenerate minima at 8 different points of T3. We show that the asymptotics
of the discrete spectrum of H with respect to the dispersion functions (1.1) and (1.2)
does not change.

The organization of the present paper is as follows. Section 1 is an introduction to
the whole work. In Section 2, the main results of the paper are formulated. In Section 3,
we discuss some results concerning threshold analysis of families of Friedrichs models
hµα(p). In Section 4, we describe the location and structure of the essential spectrum
of H. In Section 5, first we give a realization of the Birman-Schwinger principle and
then we obtain an asymptotic formula for the number of negative eigenvalues of
H22. In Section 6, we prove the infiniteness of the number of eigenvalues of H lying
inside (in the gap, below the bottom) of its essential spectrum. At the end we show
non-emptiness of the class of functions u(·) and v(·) satisfying the conditions of the
main results of the present paper.
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2. NOTATIONS AND MAIN RESULTS

Throughout the paper we adopt the following conventions. Let N, Z, R and C be
the set of all positive integers, integers, real and complex numbers, respectively. The
subscripts α and β always are equal to 1 or 2 and α 6= β. We denote by L2(Ω) the
Hilbert space of square integrable (complex) functions defined on a measurable set Ω ⊂
Rn, by L(m)

2 (Ω) the Hilbert space of m-component vector functions ϕ = (ϕ1, . . . , ϕm),
ϕk ∈ L2(Ω), k = 1, . . . ,m, and by diag{B1, . . . , Bm} the m×m diagonal matrix with
operators B1, . . . , Bm as diagonal entries. In what follows we deal with operators in
various spaces of vector-valued functions. They will be denoted by bold letters and
will be written in matrix form. We denote by σ(·), σess(·) and σdisc(·), respectively, the
spectrum, the essential spectrum, and the discrete spectrum of a bounded self-adjoint
operator.

Set w1(p, q) := w(p, q), w2(p, q) := w(q, p) and H0 := C.
To study the spectral properties of the operator H we introduce the following two

families of bounded self-adjoint operators (Friedrichs models), acting in H0⊕H1 and
H1, by

hµ1(p) :=

(
h00(p) h01
h∗01 h11(p)

)
and hµ2(p) := h02(p)− µ2v,

respectively, where

h00(p)f0 = u(p)f0, h01f1 =

∫

T3

v(s)f1(s)ds,

h11(p) = h01(p)− µ1v, (vf1)(q) =

∫

T3

f1(s)ds,

(h0α(p)f1)(q) = wα(p, q)f1(q), α = 1, 2.

The following theorem describes the location of the essential spectrum of the
operator H by the spectrum of the families hµ1(p) and hµ2(p).

Theorem 2.1. The essential spectrum of H satisfies

σess(H) =
⋃

p∈T3

σdisc(hµ1
(p))∪

⋃

p∈T3

σdisc(hµ2
(p))∪[0;M ], M :=

9

2
(l1+l2+l3). (2.1)

Moreover, the set σess(H) is a union of at most five intervals.

Throughout this paper we assume the following additional assumption that the
real-valued continuous function v(·) satisfies the condition

∫

T3

v(s)g(p, s)ds = 0 (2.2)

for any function g ∈ L2((T3)2), which is considered periodical on each variable with
period π.
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Note that the functions

v(p) =
3∑

i=1

ci cos p(i)

and

v(p) =

3∑

i=1

ci cos p(i) cos(2p(i)),

where ci, i = 1, 2, 3 are arbitrary real numbers, satisfy the condition (2.2). Indeed, for
v(p) =

∑3
i=1 ci cos p(i), we have

∫

T3

v(s)g(p, s)ds =

∫

T3

v(s+ π̄)g(p, s+ π̄)ds = −
∫

T3

v(s)g(p, s)ds, π̄ = (π, π, π),

which yields the equality (2.2).
Under the condition (2.2) the discrete spectrum of hµ1

(p) coincides (see Lemma 3.1
below) with the union of discrete spectra of the operators

hµ1(p) := h11(p) and h(p) :=

(
h00(p) h01
h∗01 h01(p)

)
.

It follows from the definition of the operators hµ1(p) and h(p) that their structure
is simpler than that of hµ1

(p), and the equality (2.1) can be rewritten as

σess(H) =
⋃

p∈T3

σdisc(hµ1
(p)) ∪

⋃

p∈T3

σdisc(hµ2
(p)) ∪

⋃

p∈T3

σdisc(h(p)) ∪ [0;M ].

Let
mα(p) := min

q∈T3
wα(p, q), Mα(p) := max

q∈T3
wα(p, q).

For any fixed p ∈ T3 and µα > 0 we define the functions

∆(p ; z) := u(p)− z −
∫

T3

v(s)2ds

w1(p, s)− z , z ∈ C \ [m1(p);M1(p)],

∆µα(p ; z) := 1− µα
∫

T3

ds

wα(p, s)− z , z ∈ C \ [mα(p);Mα(p)].

These functions are the Fredholm determinants associated with the operators h(p)
and hµα(p), respectively.

We introduce the following points of T3 :

p1 := (0, 0, 0), p2 := (π, 0, 0), p3 := (0, π, 0), p4 := (0, 0, π),

p5 := (π, π, 0), p6 := (π, 0, π), p7 := (0, π, π), p8 := (π, π, π).
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It is easy to verify that the function w(·, ·) (and hence the functions wα(·, ·),
α = 1, 2) has non-degenerate minimum at the points (pi, pj) ∈ (T3)2, i, j = 1, 8;
where 1, n = 1, . . . , n. Therefore, for any p ∈ T3 the integral

∫

T3

v(s)2ds

w1(p, s)

is finite.
The Lebesgue dominated convergence theorem yields

∆(pi ; 0) = lim
p→pi

∆(pi ; 0), i = 1, 8,

and hence the function ∆(· ; 0) is continuous on T3.
Let a and b be the lower and upper bounds of the set

⋃
p∈T3 σdisc(h(p))∩ (−∞; 0],

respectively, and

µ0
α := (l3 + lα)



∫

T3

ds

ε(s)



−1

, α = 1, 2.

Since the operator hµ0
α

(p1) has no negative eigenvalues (see Lemma 3.8), that is,
non-negative, by Theorem 1 of [14] the operator hµ0

α
(p) is non-negative for all p ∈ T3.

By the other side from the positivity of v it follows that the operator hµα(p) has no
eigenvalues greater than M for any µα > 0 and p ∈ T3. Hence for µα = µ0

α we have

σess(H22) =
⋃

p∈T3

σdisc(hµ0
1
(p)) ∪

⋃

p∈T3

σdisc(hµ0
2
(p)) ∪ [0;M ] = [0;M ]. (2.3)

Therefore, the study of the structure of the set σess(H) is reduced to the study of the
structure of the set

⋃
p∈T3 σdisc(h(p)) ∪ [0;M ], which was completely studied in [20].

The following theorem describes the structure of the part of the essential spectrum
of H located in (−∞;M ].

Theorem 2.2. Let µ = µ0
α, α = 1, 2. Then the following assertions hold:

(i) if min
p∈T3

∆(p ; 0) ≥ 0, then (−∞;M ] ∩ σess(H) = [0;M ],

(ii) if min
p∈T3

∆(p ; 0) < 0, max
p∈T3

∆(p ; 0) ≥ 0, then (−∞;M ] ∩ σess(H) = [a;M ] and

a < 0,
(iii) if max

p∈T3
∆(p ; 0) < 0, then (−∞;M ] ∩ σess(H) = [a; b] ∪ [0;M ] and a < b < 0.

Let us denote by τess(H22) the bottom of the essential spectrum of H22 and by
N(z) the number of eigenvalues of H22 lying below the point z, z < τess(H22).

By the equality (2.3), we have τess(H22) = 0 for µ = µ0
α, α = 1, 2.

The main results of the present paper are as follows.
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Theorem 2.3. Assume µ = µ0
α, α = 1, 2. Then the operator H22 has infinitely many

negative eigenvalues E1, . . . , En, . . . , such that lim
n→∞

En = 0, and the function N(·)
obeys the relation

lim
z→−0

N(z)| log |z||−1 = U0, 0 < U0 <∞. (2.4)

Clearly, by equality (2.4), the infinite cardinality of the negative discrete spectrum
of H22 follows automatically from the positivity of U0.

We point out that the operator H22 has been considered in [2], in the case where
li = 1, i = 1, 2, 3, and the function ε(·) has the form (1.2). This function has a unique
non-degenerate minimum at (0, 0, 0) ∈ T3. Therefore, Theorem 2.3 can be considered
as a generalization of Theorem 2.4 in [2], since in our case the function ε(·) has
non-degenerate minimum at 8 different points of T3 and the asymptotics (2.4) does
not depend on these points.

An easy computation shows that the operator

(V f2)(p, q) = µ1

∫

T3

f2(p, s)ds+ µ2

∫

T3

f2(s, q)ds, f2 ∈ H2,

is a positive operator and max(σess(H22)) = max(σ(H22 + V )) = M, and hence, it
is obvious that the operator H22 has no eigenvalues greater than M. So, the discrete
spectrum of H22 is always negative or empty.

For n ∈ N denote by f (n)2 the eigenfunction corresponding to the eigenvalue En of
H22 with µ = µ0

α, α = 1, 2.

Theorem 2.4. Let µ = µ0
α, α = 1, 2. Then the numbers E1, . . . , En, . . . are eigenval-

ues of H and the corresponding eigenfunction has the form f (n) = (0, f
(n)
2 ), n ∈ N.

Moreover,

(i) if min
p∈T3

∆(p ; 0) ≥ 0, then the set {En : n ∈ N} is located on below the bottom of

the essential spectrum of H,
(ii) if min

p∈T3
∆(p ; 0) < 0, max

p∈T3
∆(p ; 0) ≥ 0, then the countable (infinite) subset of

{En : n ∈ N} is located in the essential spectrum of H,
(iii) if max

p∈T3
∆(p ; 0) < 0, then the countable (infinite) subset of {En : n ∈ N} is located

in the gap of the essential spectrum of H.

Note that the class of functions u(·) and v(·) satisfying the conditions in Theo-
rem 2.4 is nonempty, for the corresponding example see Section 7.

3. THRESHOLD ANALYSIS OF THE FAMILY
OF FRIEDRICHS MODELS hµα(p)

In this section we study some spectral properties of the family of Friedrichs models
hµ1(p) and hµα(p), which play a crucial role in the study of spectral properties of the
operators H and H22.
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According to the Weyl theorem we have σess(hµ1
(p)) = [m1(p);M1(p)].

The following lemma describes the relation between the eigenvalues of the opera-
tors hµ1(p), hµ1(p) and h(p).

Lemma 3.1. The number z ∈ C \ [m1(p);M1(p)] is an eigenvalue of hµ1(p) if and
only if the number z is an eigenvalue of at least one of the operators hµ1(p) and h(p).

Proof. Suppose (f0, f1) ∈ H0⊕H1 is an eigenvector of the operator hµ1
(p) associated

with the eigenvalue z ∈ C\[m1(p);M1(p)]. Then f0 and f1 satisfy the following system
of equations:





(u(p)− z)f0 +
∫
T3

v(s)f1(s)ds = 0,

v(q)f0 + (w1(p, q)− z)f1(q)− µ1

∫
T3

f1(s)ds = 0.
(3.1)

Since for any z ∈ C\ [m1(p);M1(p)] and q ∈ T3 the relation w1(p, q)− z 6= 0 holds
for all p ∈ T3, from the second equation of (3.1) for f1 we have

f1(q) =
µ1Cf1

w1(p, q)− z −
v(q)f0

w1(p, q)− z , (3.2)

where
Cf1 =

∫

T3

f1(s)ds. (3.3)

Substituting the expression (3.2) for f1 into the first equation of system (3.1)
and equality (3.3), and then using condition (2.2), we conclude that the system of
equations (3.1) has a nontrivial solution if and only if the system of equations

{
∆(p ; z)f0 = 0,

∆µ1
(p ; z)Cf1 = 0

has a nontrivial solution, i.e., if the condition ∆µ1
(p ; z)∆(p ; z) = 0 is satisfied.

If we set µ1 = 0 in above analysis, then hµ1
(p) = h(p); in this case the number

z ∈ C \ [m1(p);M1(p)] is an eigenvalue of h(p) if and only if ∆(p ; z) = 0.
Similarly, putting f0 = 0 in above analysis, we can assert that the number z ∈

C \ [m1(p);M1(p)] is an eigenvalue of hµ1(p) if and only if ∆µ1(p ; z) = 0. Proof of
lemma is complete.

From the proof of Lemma 3.1 we obtain the following corollary.

Corollary 3.2.

(i) The equality σdisc(hµ1
(p)) = σdisc(hµ1

(p)) ∪ σdisc(h(p)) holds.
(ii) The number z ∈ C \ [m1(p);M1(p)] is an eigenvalue of h(p) if and only if

∆(p ; z) = 0.
(iii) The number z ∈ C \ [mα(p);Mα(p)] is an eigenvalue of hµα(p) if and only if

∆µα(p ; z) = 0.
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The remainder of this section will be devoted to the threshold analysis of hµα(p),
α = 1, 2. First we remark that ∆µα(p1 ; 0) = ∆µα(pi ; 0), i = 2, 8. Then from the
definition of µ0

α one can see that ∆µα(p1 ; 0) = 0 if and only if µ = µ0
α.

Denote by C(T3) and L1(T3) the Banach spaces of continuous and integrable
functions on T3, respectively.

Definition 3.3. The operator hµα(p1) is said to have a zero energy resonance if the
number 1 is an eigenvalue of the integral operator

(Gµαψ)(q) =
µα

lβ + l3

∫

T3

ψ(t)dt

ε(t)
, ψ ∈ C(T3),

and at least one (up to a normalization constant) of the associated eigenfunctions ψ
satisfies the condition ψ(pj) 6= 0 for some j ∈ {1, . . . , 8}. If 1 is not an eigenvalue of
Gµα , then we say that z = 0 is a regular type point for the operator hµα(p1).

Remark 3.4. The number 1 is an eigenvalue of Gµα if and only if µ = µ0
α. Conse-

quently, the operator hµα(p1) has a zero energy resonance if and only if µ = µ0
α.

Remark 3.5. The operator H22 has infinitely many negative eigenvalues accumu-
lating at zero, if and only if, both Friedrichs models hµα(p1), α = 1, 2, have a zero
energy resonance.

We notice that in the Definition 3.3 the requirement of the presence of eigenvalue
1 of Gµα corresponds to the existence of a solution of hµα(p1)fα = 0 and the condition
ψ(pj) 6= 0 for some j ∈ {1, . . . , 8} implies that the solution fα of this equation does
not belong to L2(T3). More exactly, if hµα(p1) has a zero energy resonance, then the
function

fα(q) =
µα

(lβ + l3)ε(q)
(3.4)

satisfies hµα(p1)fα = 0 and fα ∈ L1(T3) \ L2(T3).
Indeed. The proof of the fact that the function fα satisfies hµα(p1)fα = 0 is

obvious. We show that fα ∈ L1(T3) \ L2(T3).
Henceforth, we shall denote by C1, C2, C3 different positive numbers and for δ > 0

we set

Uδ(pi) := {p ∈ T3 : |p− pi| < δ}, Tδ := T3 \
8⋃

j=1

Uδ(pj).

The definition of the function ε(·) implies that it has a non-degenerate zero min-
imum at the points pi ∈ T3, i = 1, 8 and hence there exist C1, C2, C3 > 0 and δ > 0
such that

C1|q − pj |2 ≤ ε(q) ≤ C2|q − pj |2, q ∈ Uδ(pj), j = 1, 8, (3.5)

ε(q) ≥ C3, q ∈ Tδ. (3.6)
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Using the estimates (3.5) and (3.6) we have
∫

T3

|fα(t)|2dt ≥ µ2
α

(lβ + l3)2

∫

Uδ(p1)

dt

ε2(t)
≥ C2

∫

Uδ(p1)

dt

|t− p1|4
=∞,

∫

T3

|fα(t)|dt =
µα

lβ + l3

( 8∑

j=1

∫

Uδ(pj)

dt

ε(t)
+

∫

Tδ

dt

ε(t)

)
≤ C1

8∑

j=1

∫

Uδ(pj)

dt

|t− pj |
+ C3 <∞.

Therefore, fα ∈ L1(T3) \ L2(T3).
The following Lemma plays a crucial role in the proof of Theorem 2.3, that is,

asymptotics (2.4).

Lemma 3.6. The following decomposition

∆µ0
α

(p ; z) =
8π2µ0

α

(lβ + l3)3/2

√
l1l2 + l1l3 + l2l3

lβ + l3
|p− pi|2 −

z

2
+O(|p− pi|2) +O(|z|)

holds for all |p− pi| → 0, i = 1, 8, and z → −0.

Proof. Let us sketch the main idea of the proof. Take a sufficiently small δ > 0 such
that Uδ(pi) ∩ Uδ(pj) = ∅ for all i 6= j, i, j = 1, 8.

Using the additivity of the integral we rewrite the function ∆µ0
α

(· ; ·) as

∆µ0
α

(p ; z) = 1− µ0
α

8∑

j=1

∫

Uδ(pj)

ds

wα(p, s)− z − µ
0
α

∫

Tδ

ds

wα(p, s)− z . (3.7)

Since the function wα(·, ·) has a non-degenerate minimum at the points (pi, pj),
i, j = 1, 8, analysis similar to that in the proof of Lemma 3.5 in [2] shows that

∫

Uδ(pj)

ds

wα(p, s)− z =

∫

Uδ(pj)

ds

wα(pi, s)

− π2

(lβ + l3)3/2

√
l1l2 + l1l3 + l2l3

lβ + l3
|p− pi|2 −

z

2

+O(|p− pi|2) +O(|z|),∫

Tδ

ds

wα(p, s)− z =

∫

Tδ

ds

wα(pi, s)
+O(|p− pi|2) +O(|z|)

as |p − pi| → 0 for i = 1, 8 and z → −0. Substituting the last two expressions in to
equality (3.7) we obtain

∆µ0
α

(p ; z) = ∆µ0
α

(pi ; 0) +
8π2µ0

α

(lβ + l3)3/2

√
l1l2 + l1l3 + l2l3

lβ + l3
|p− pi|2 −

z

2

+O(|p− pi|2) +O(|z|)
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as |p − pi| → 0 for i = 1, 8 and z → −0. Now the equality ∆µ0
α

(pi ; 0) = 0 completes
the proof of Lemma 3.6.

Corollary 3.7. For some C1, C2, C3 > 0 and δ > 0 the following inequalities hold:

(i) C1|p− pi| ≤ ∆µ0
α

(p ; 0) ≤ C2|p− pi|, p ∈ Uδ(pi), i = 1, 8;
(ii) ∆µ0

α
(p ; 0) ≥ C3, p ∈ Tδ.

Proof. The Lemma 3.6 yields assertion (i) for some positive numbers C1, C2. The
positivity and continuity of the function ∆µ0

α
(· ; 0) on the compact set Tδ imply the

assertion (ii).

Lemma 3.8. The operator hµ0
α

(p1) has no negative eigenvalues.

Proof. Since the function ∆µα(p1 ; ·) is decreasing on (−∞; 0), the definition of µ0
α

implies
∆µ0

α
(p1 ; z) > ∆µ0

α
(p1 ; 0) = 0

for all z < 0. By part (iii) of Corollary 3.2, it means that the operator hµ0
α

(p1) has no
negative eigenvalues.

4. LOCATION AND STRUCTURE OF THE ESSENTIAL SPECTRUM OF H

In this section we give only the main ideas of the proof of Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Set

Σ :=
⋃

p∈T3

σdisc(hµ1(p)) ∪
⋃

p∈T3

σdisc(hµ2(p)) ∪ [0;M ].

The inclusion Σ ⊂ σess(H) is established with the use of the well-known Weyl crite-
rion [22].

For the proof of σess(H) ⊂ Σ, for each z ∈ C \ [0;M ], we define the 3 × 3 block
operator matrices A(z) and K(z) acting in the Hilbert space L(3)

2 (T3) as

A(z) := (Aij(z))
3
i,j=1 , K(z) := (Kij(z))

3
i,j=1 ,

where the operator Aij(z) is the multiplication operator by the function ∆ij(· ; z) :

∆11(p ; z) := ∆(p ; z), ∆21(p ; z) :=

∫

T3

v(s)ds

w(p, s)− z , ∆12(p ; z) := −µ1∆21(p ; z),

∆ii(p ; z) := ∆µi−1
(p ; z), i = 2, 3,

∆ij(p ; z) := 0, otherwise,
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and the operator Kij(z) is the integral operator with the kernel Kij(·, ·; z) :

K13(p, s; z) :=
µ2v(s)

w(p, s)− z , K23(p, s; z) :=
µ2

w(p, s)− z ,

K31(p, s; z) := − v(p)

w(s, p)− z , , K32(p, s; z) :=
µ1

w(s, p)− z ,

Kij(p, s; z) := 0, otherwise

(s is the integration variable). We note that for each z ∈ C\ [0;M ], all entries of K(z)
belong to the Hilbert-Schmidt class and therefore, K(z) is a compact.

Using the similar arguments of [19, 25] one can prove that for each z ∈ C \ Σ,
the operator A(z) is boundedly-invertible and the number z ∈ C \Σ is an eigenvalue
of the operator H if and only if the number λ = 1 is an eigenvalue of the oper-
ator A−1(z)K(z). Moreover, the eigenvalues z and 1 have the same multiplicities.
Then analytic Fredholm theorem (see, e.g. Theorem VI.14 in [22]) proves inclusion
σess(H) ⊂ Σ.

Since the function ∆µ2
(p ; ·) is a monotonically decreasing on R \ [m2(p);M2(p)]

and ((hµ2
(p)− z)f, f) < 0 for all z > M2(p) and f ∈ L2(T3), the operator hµ2

(p) has
no more than one eigenvalue. In [21] it was shown that for any p ∈ T3 the operator
hµ1(p) has no more than three eigenvalues lying outside of its essential spectrum.
Then the theorem on the spectrum of decomposable operators [22] and the definition
of Σ imply that the set Σ consists of no more than five bounded closed intervals.

Proof of Theorem 2.2. First we recall that if µα = µ0
α, then by Theorem 2.1 taking

into account equality (2.3) we have

σess(H) =
⋃

p∈T3

σdisc(h(p)) ∪ [0;M ]. (4.1)

Let minp∈T3 ∆(p ; 0) ≥ 0. Then ∆(p ; 0) ≥ 0 for any p ∈ T3 and hence, by part (ii)
of Corollary 3.2, for any p ∈ T3 the operator h(p) has no negative eigenvalues, that is,

⋃

p∈T3

σdisc(h(p)) ∩ (−∞; 0) = ∅.

Assume minp∈T3 ∆(p ; 0) < 0 and maxp∈T3 ∆(p ; 0) ≥ 0. Then there exist points
p′, p′′ ∈ T3 such that

min
p∈T3

∆(p ; 0) = ∆(p′ ; 0) and max
p∈T3

∆(p ; 0) = ∆(p′′ ; 0) ≥ 0.

We introduce the following subset of T3 :

G := {p ∈ T3 : ∆(p ; 0) < 0}.

Then it is obvious that G is a non-empty open set and G 6= T3.
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For any p ∈ T3 the function ∆(p ; ·) is continuous and decreasing on (−∞; 0], and
the equality limz→−∞∆(p ; z) = +∞ holds. Then for any p ∈ G there exists a unique
point E(p) ∈ (−∞; 0) such that ∆(p ;E(p)) = 0. By part (ii) of Corollary 3.2, for
any p ∈ G the point E(p) is the unique negative eigenvalue of the operator h(p). For
any p ∈ T3 \ G and z < 0 we have ∆(p ; z) > ∆(p ; 0) ≥ 0. Hence, by part (ii) of
Corollary 3.2, for each p ∈ T3 \G the operator h(p) has no negative eigenvalues.

By assumption the function u(·) is continuous, v(·) and w(·, ·) are analytic on its
domains, hence the function E : p ∈ G→ E(p) is continuous on G.

Since for any p ∈ T3 the operator h(p) is bounded and T3 is a compact set, there
exists a positive number C such that sup

p∈T3

‖h(p)‖ ≤ C and for any p ∈ T3 we have

σ(h(p)) ⊂ [−C;C]. (4.2)

For any q ∈ ∂G = {p ∈ T3 : ∆(p ; 0) = 0} there exist {qn} ⊂ G such that qn → q as
n → ∞. If we set E(n) := E(qn), then for any n ∈ N the inequality E(n) < 0 holds
and from (4.2) we get {E(n)} ⊂ [−C; 0). Without loss of generality (otherwise we
would have to take a subsequence) we assume that E(n) → E(0) as n → ∞ for some
E(0) ∈ [−C; 0].

From the continuity of the function ∆(· ; ·) in T3 × (−∞; 0] and qn → q and
E(n) → E(0) as n→∞ it follows that

0 = lim
n→∞

∆(qn ;E(n)) = ∆(q ;E(0)).

Since for any p ∈ T3 the function ∆(p ; ·) is decreasing in (−∞; 0] and q ∈ ∂G we
see that ∆(q ;E(0)) = 0 if and only if E(0) = 0.

Now for q ∈ ∂G we define

E(q) = lim
q′→q, q′∈G

E(q′) = 0.

Since the function E(·) is continuous on the compact set G∪ ∂G and E(q) = 0 for all
q ∈ ∂G we conclude that Ran(E) = [a; 0] and a < 0, where Ran(E) denotes an image
of the function E(·).

Hence the set
⋃

p∈T3

σdisc(h(p)) ∩ (−∞; 0]

coincides with the set Ran(E) = [a; 0]. Then the equality (4.1) completes the proof of
assertion (ii) of Theorem 2.2.

If maxp∈T3 ∆(p ; 0) < 0, then G = T3 and the above analysis leads Ran(E) = [a; b]
with b < 0. Theorem 2.2 is completely proved.
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5. ASYMPTOTICS FOR THE NUMBER
OF NEGATIVE EIGENVALUES OF H22

In this section first we review the corresponding Birman-Schwinger principle for the
operator H22 and then we derive the asymptotic relation (2.4) for the number of
negative eigenvalues of H22.

5.1. THE BIRMAN-SCHWINGER PRINCIPLE

For a bounded self-adjoint operator A acting in the Hilbert space R, we define [9] the
number n(γ,A) as follows

n(γ,A) := sup{dimF : (Au, u) > γ, u ∈ F ⊂ R, ‖u‖ = 1}.

The number n(γ,A) is equal to infinity if γ < maxσess(A); if n(γ,A) is finite, then
it is equal to the number of eigenvalues of A bigger than γ.

By the definition of N(z), we have N(z) = n(−z,−H22), −z > −τess(H22).
Since the function ∆µα(· ; ·) is positive on T3 × (−∞; τess(H22)) for any µα > 0,

the positive square root of ∆µα(p ; z) exists for any µα > 0, p ∈ T3 and z < τess(H22).
In our analysis of the discrete spectrum of H22 the crucial role is played by the

2× 2 block operator matrix T(z), z < τess(H22) acting on L(2)
2 (T3) with the entries

Tαα(z) = 0, (Tαβ(z)ϕβ)(p) =

√
µ1µ2√

∆µα(p ; z)

∫

T3

ϕβ(s)ds√
∆µβ (s ; z)(wα(p, s)− z) .

The following lemma is a realization of the well-known Birman-Schwinger principle
for the operator H22 (see [2, 3, 23]).

Lemma 5.1. For any z < τess(H22) the operator T(z) is compact and continuous in
z and

N(z) = n(1,T(z)).

5.2. PROOF OF THEOREM 2.3

Let S2 be the unit sphere in R3 and σ = L2(S2). As we shall see, the discrete spectrum
asymptotics of the operator T(z) as z → −0 is determined by the integral operator Sr,
r = 1/2| log |z|| in L2((0, r), σ(2)) with the kernel Sαβ(y, t), y = x − x′, x, x′ ∈ (0, r),
t = 〈ξ, η〉, ξ, η ∈ S2, where

Sαα(y, t) = 0; Sαβ(y, t) =
1

4π2

uαβ
cosh(y + rαβ) + sαβt

,

uαβ = uβα =

(
(l1 + l3)(l2 + l3)

l1l2 + l1l3 + l2l3

)1/2

, rαβ =
1

2
log

lα + l3
lβ + l3

,

sαβ = sβα =
l3

(l1 + l3)(l2 + l3)
, α, β = 1, 2.
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The eigenvalue asymptotics for the operator Sr have been studied in detail by
Sobolev [23], by employing an argument used in the calculation of the canonical
distribution of Toeplitz operators.

Let us recall some results of [23] which are important in our work.
The coefficient in the asymptotics (2.4) of N(z) will be expressed by means of the

self-adjoint integral operator Ŝ(θ), θ ∈ R, in the space σ(2), whose kernel is of the
form

Ŝαα(θ, t) = 0, Ŝαβ(θ, t) =
1

4π2
uαβe

irαβθ
sinh[θ arccos sαβt]√

1− s2αβt sinh(πθ)
,

and depends on the inner product t = 〈ξ, η〉 of the arguments ξ, η ∈ S2. For γ > 0,
define

U(γ) :=
1

4π

+∞∫

−∞

n(γ, Ŝ(θ))dθ.

This function was studied in detail in [23]; it is used in the existence proof for the
Efimov effect. In particular, as was proved in [23], the function U(·) is continuous in
γ > 0, and the limit

lim
r→0

1

2
r−1n(γ,Sr) = U(γ) (5.1)

exists and the number U(1) is positive.
Theorem 2.3 can be derived by using a perturbation argument based on the follow-

ing lemma (see Lemma 4.9 in [23]). For completeness, we reproduce the proof given
there.

Lemma 5.2. Let A(z) = A0(z) + A1(z), where A0(z) (A1(z)) is compact and con-
tinuous in the strong operator topology for z < 0 (for z ≤ 0). Assume that the limit
limz→−0 f(z)n(γ,A0(z)) = U(γ) exists and U(·) is continuous in (0; +∞) for some
function f(·), where f(z) → 0 as z → 0. Then the same limit exists for A(z) and
limz→−0 f(z)n(γ,A(z)) = U(γ).

Proof. Using the Weyl inequality

n(γ1 + γ2,K1 +K2) ≤ n(γ1,K1) + n(γ2,K2)

for the sum of compact operators K1 and K2 and for any positive numbers γ1 and
γ2, for θ ∈ (0; 1), we have

n(γ,A(z)) ≤ n((1− θ)γ,A0(z)) + n(θγ,A1(z))

and
n(γ,A(z)) ≥ n((1 + θ)γ,A0(z))− n(θγ,A1(z)).

Since the operator A1(z) is compact and continuous in the strong operator topology
in z ≤ 0, we obtain

U((1 + θ)γ) ≤ lim
z→−0

inf f(z)n(γ,A(z)) ≤ lim
z→−0

sup f(z)n(γ,A(z)) ≤ U((1− θ)γ).
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Therefore, the continuity of the function U(γ) for γ > 0 completes the proof of
Lemma 5.2.

Remark 5.3. Since the function U(·) is continuous with respect to γ, it follows from
Lemma 5.2 that any perturbation of A0(z) treated in Lemma 5.2 (which is compact
and continuous in the strong operator topology up to z = 0) does not contribute to
the asymptotic relation (2.4).

Now we are going to reduce the study of the asymptotics for the operator T(z) to
that of the asymptotics Sr.

Let T(δ; |z|) be the 2 × 2 block operator matrix in L
(2)
2 (T3) whose entries are

integral operators with the kernel Tαβ(δ, |z|; ·, ·) :

Tαα(δ, |z|; p, q) = 0,

Tαβ(δ, |z|; p, q)

= d0

8∑

i,j=1

χδ(p− pi)χδ(q − pj)(mα|p− pi|2 + |z|
2 )−

1
4 (mβ |q − pj |2 + |z|

2 )−
1
4

(lα + l3)|p− pi|2 + 2l3(p− pi, q − pj) + (lβ + l3)|q − pj |2 + |z|
2

,

where

d0 :=
(l1 + l3)3/4(l2 + l3)3/4

16π2
, mα :=

l1l2 + l1l3 + l2l3
lβ + l3

and χδ(·) is the characteristic function of the domain Uδ(0), 0 = (0, 0, 0) ∈ T3.
The operator T(δ; |z|) is called a singular part of T(z).

Lemma 5.4. Let µ = µ0
α. For any z ≤ 0 and small δ > 0 the difference T(z)−T(δ; |z|)

belongs to the Hilbert-Schmidt class and is continuous in the strong operator topology
with respect to z ≤ 0.

Proof. First we recall that the expansion

w(p, q) = 2((l1 + l3)|p− pi|2 + 2l3(p− pi, q − pj) + (l2 + l3)|q − pj |2)

+O(|p− pi|4) +O(|q − pj |4)

as |p − pi|, |q − pj | → 0, for i, j = 1, 8 implies that there exist C1, C2 > 0 and δ > 0
such that

C1(|p− pi|2 + |q − pj |2) ≤ w(p, q) ≤ C2(|p− pi|2 + |q − pj |2),

(p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, 8,

w(p, q) ≥ C1, (p, q) ∈ T2
δ .
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Applying last estimates and Corollary 3.7 we obtain that there exist C1, C2 > 0
such that the kernel of the operator Tαβ(z) − Tαβ(δ; |z|) can be estimated by the
square-integrable function Q(·, ·) defined on (T3)2 as

Q(p, q) = C1 +
|p− pi|−

1
2 + |q − pj |−

1
2 + 1

|p− pi|2 + (p− pi, q − pj) + |q − pj |2
,

(p, q) ∈ Uδ(pi)× Uδ(pj), i, j = 1, 8,

Q(p, q) = C1, (p, q) 6∈
8⋃

i=1

Uδ(pi)×
8⋃

j=1

Uδ(pj).

Hence, the operator Tαβ(z) − Tαβ(δ; |z|) belongs to the Hilbert-Schmidt class for all
z ≤ 0. In combination with the continuity of the kernel of the operator with respect
to z < 0, this implies the continuity of Tαβ(z) − Tαβ(δ; |z|) in the strong operator
topology with respect to z ≤ 0. The lemma is proved.

The following theorem is fundamental for the proof of the asymptotic relation (2.4).

Theorem 5.5. We have the relation

lim
|z|→0

n(γ,T(δ; |z|))| log |z||−1 = U(γ), γ > 0. (5.2)

Proof. From the definition of the kernel function Tαβ(δ, |z|; ·, ·) it follows that the
subspace of vector functions ψ = (ψ1, ψ2) with components supported by the set⋃8
i=1 Uδ(pi) is invariant with respect to the operator T(δ; |z|).
Let T0(δ; |z|) be the restriction of the operator T(δ; |z|) to the subspace

L
(2)
2 (
⋃8
i=1 Uδ(pi)), that is, 2 × 2 block operator matrix in L

(2)
2 (
⋃8
i=1 Uδ(pi)) whose

entries T
(0)
αβ (δ; |z|) are integral operators with the kernel T

(0)
αβ (δ; |z|; ·, ·), where

T
(0)
αα (δ; |z|; p, q) = 0 and the function T

(0)
αβ (δ; |z|; ·, ·) is defined on

⋃8
i=1 Uδ(pi) ×⋃8

j=1 Uδ(pj) as

T
(0)
αβ (δ; |z|; p, q) =

d0 (mα|p− pi|2 + |z|/2)−
1
4 (mβ |q − pj |2 + |z|/2)−

1
4

(lα + l3)|p− pi|2 + 2l3(p− pi, q − pj) + (lβ + l3)|q − pj |2 + |z|/2 ,

(p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, 8.

Since

L2(
8⋃

i=1

Uδ(pi)) ∼=
8⊕

i=1

L2(Uδ(pi)),

we can express the integral operator T (0)
αβ (δ; |z|) as the following block operator matrix

T
(0)
αβ(δ; |z|) acting on

⊕8
i=1 L2(Uδ(pi)) as

T
(0)
αβ(δ; |z|) :=




T
(1,1)
αβ (δ; |z|) . . . T

(1,8)
αβ (δ; |z|)

...
. . .

...
T

(8,1)
αβ (δ; |z|) . . . T

(8,8)
αβ (δ; |z|)


 ,
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where T (i,j)
αβ (δ; |z|) : L2(Uδ(pj)) → L2(Uδ(pi)) is an integral operator with the kernel

T
(0)
αβ (δ; |z|; p, q), (p, q) ∈ Uδ(pi)× Uδ(pj) for i, j = 1, 8.

Let us introduce the operatorT1(r), r = |z|− 1
2 , acting on L(8)

2 (Ur(0))⊕L(8)
2 (Ur(0))

as

T1(r) :=

(
0 T

(1)
12 (r)

T
(1)
21 (r) 0

)

with the entries T(1)
αβ(r) : L

(8)
2 (Ur(0))→ L

(8)
2 (Ur(0)) (8× 8 block operator matrix):

T
(1)
αβ(r) :=




T
(1)
αβ (r) . . . T

(1)
αβ (r)

...
. . .

...
T

(1)
αβ (r) . . . T

(1)
αβ (r)


 ,

where T (1)
αβ (r) is the integral operator on L2(Ur(0)) with the kernel

d0 (mα|p|2 + 1/(2δ2))−
1
4 (mβ |q|2 + 1/(2δ2))−

1
4

(lα + l3)|p|2 + 2l3(p, q) + (lβ + l3)|q|2 + 1/(2δ2)
.

Now we consider the following unitary dilation (16× 16 diagonal matrix)

Br := diag{B(1)
r , . . . , B(8)

r , B(1)
r , . . . , B(8)

r } :
16⊕

i=1

L2(Uδ(pi))→ L
(16)
2 (Ur(0)),

Here the operator B(i)
r : L2(Uδ(pi))→ L2(Ur(0)), i = 1, 8 acts as

(B(i)
r f)(p) =

(r
δ

)− 3
2

f
(δ
r
p+ pi

)
.

Then for i = 1, 8 we have

(B(i)
r )−1 : L2(Ur(0))→ L2(Uδ(pi)), ((B(i)

r )−1f)(p) =
(r
δ

) 3
2

f
(r
δ

(p− pi)
)
.

Using the definitions of the operators T (1)
αβ (r), T

(i,j)
αβ (δ; |z|) and B(i)

r for i, j = 1, 8 we
obtain

(B(i)
r T

(i,j)
αβ (δ; |z|)(B(j)

r )−1f)(p)

= B(i)
r




∫

Uδ(pj)

d0 (mα|p− pi|2 + |z|/2)−
1
4 (mβ |q − pj |2 + |z|/2)−

1
4 f( rδ (q − pj))dq

(lα + l3)|p− pi|2 + 2l3(p− pi, q − pj) + (lβ + l3)|q − pj |2 + |z|/2




=

∫

Ur(0)

d0 (mα|p|2 + 1/(2δ2))−
1
4 (mβ |q|2 + 1/(2δ2))−

1
4 f(q)dq

(lα + l3)|p|2 + 2l3(p, q) + (lβ + l3)|q|2 + 1/(2δ2)

= (T
(1)
αβ (r)f)(p), f ∈ L2(Ur(0)).
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Therefore, T1(r) = BrT0(δ; |z|)B−1r .
Let us introduce the 2× 2 block operator matrices

Ar,E : L
(16)
2 (Ur(0))→ L

(16)
2 (Ur(0))

of the form
Ar :=

(
0 A12(r)

A21(r) 0

)
, E := diag{I, I},

where Aαβ(r) and I are the 8× 1 and 1× 8 matrices of the form

Aαβ(r) :=




T
(1)
αβ (r)
...

T
(1)
αβ (r)


 , I := (I, . . . , I),

respectively, here I is the identity operator on L2(Ur(0)).
It is well known that if B1, B2 are bounded operators and γ 6= 0 is an eigenvalue

of B1B2, then γ is an eigenvalue for B2B1 as well for the same algebraic and geo-
metric multiplicities (see, e.g. [10]). Therefore, n(γ,ArE) = n(γ,EAr), γ > 0. Direct
calculation shows that T1(r) = ArE and

EAr : L
(2)
2 (Ur(0))→ L

(2)
2 (Ur(0)), EAr =

(
0 8T

(1)
12 (r)

8T
(1)
21 (r) 0

)
.

So, n(γ,T1(r)) = n(γ,EAr), γ > 0.
Further, we can replace

(mα|p|2+1/(2δ2))
1
4 , (mβ |q|2+1/(2δ2))

1
4 , (lα+l3)|p|2+2l3(p, q)+(lβ+l3)|q|2+1/(2δ2)

by the expressions

(mα|p|2)
1
4 (1−χ1(p))−1, (mβ |q|2)

1
4 (1−χ1(q))−1, (lα+ l3)|p|2 +2l3(p, q)+(lβ+ l3)|q|2,

respectively, because the corresponding error is a Hilbert-Schmidt operator and con-
tinuous in the strong operator topology up to z = 0. In this case, we obtain the 2× 2

block operator matrix T2(r) on L(2)
2 (Ur(0) \U1(0)) whose entries T (2)

αβ (r) are integral

operators with the kernel T (2)
αβ (r; ·, ·) :

T (2)
αα (r; p, q) = 0, T

(2)
αβ (r; p, q) =

8d0
(m1m2)1/4

|p|−1/2|q|−1/2
(lα + l3)|p|2 + 2l3(p, q) + (lβ + l3)|q|2 .

Using the dilation

M := diag{M,M} : L
(2)
2 (Ur(0) \ U1(0))→ L2((0, r), σ(2)),

(Mf)(x,w) = e3x/2f(exw),
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where r = 1
2 | log |z||, x ∈ (0, r), w ∈ S2, one can see that the operator T2(r) is unitarily

equivalent to the integral operator Sr.
Since the difference of the operators Sr and T(δ; |z|) is compact (up to unitary

equivalence) and r = 1/2| log |z||, we obtain the equality

lim
|z|→0

n(γ,T(δ; |z|))| log |z||−1 = lim
r→0

1

2
r−1n(γ,Sr), γ > 0.

Now Lemma 5.2 and the equality (5.1) completes the proof of Theorem 5.5.

Proof of Theorem 2.3. Let µ = µ0
α, α = 1, 2. Using Lemmas 5.2, 5.4 and Theorem 5.5

we have
lim
|z|→0

n(1,T(z))| log |z||−1 = U(1).

Taking into account the last equality and Lemma 5.1, and setting U0 = U(1) we
complete the proof of Theorem 2.3.

6. THE LOCATION OF EIGENVALUES OF H

In this section we shall prove Theorem 2.4.

Proof of Theorem 2.4. Let µ = µ0
α, α = 1, 2. By Theorem 2.3 the operator H22

has infinitely many negative eigenvalues E1, . . . , En, . . . , accumulating at zero. Let
f
(1)
2 , . . . , f

(n)
2 , . . . be the corresponding eigenfunctions.

Denote by L0 the subspace of all eigenfunctions of H22, corresponding to the
negative eigenvalues. We show that H12|L0

= 0. Let f2 be the eigenfunction of H22

corresponding to the eigenvalue z < 0, that is, H22f2 = zf2 or

f2(p, q) =
µ1ϕ1(p) + µ2ϕ2(q)

w(p, q)− z , (6.1)

where
ϕ1(p) :=

∫

T3

f2(p, s)ds, ϕ2(q) :=

∫

T3

f2(s, q)ds. (6.2)

Substituting the expression (6.1) for f2 into the equalities (6.2), we obtain

ϕ1(p) =

∫

T3

µ1ϕ1(p) + µ2ϕ2(s)

w(p, s)− z ds, ϕ2(q) =

∫

T3

µ1ϕ1(s) + µ2ϕ2(q)

w(s, p)− z ds,

or
ϕ1(p) =

µ2

∆µ1(p ; z)

∫

T3

ϕ2(s)ds

w(p, s)− z , ϕ2(q) =
µ1

∆µ2(q ; z)

∫

T3

ϕ1(s)ds

w(s, q)− z .

This implies that ϕα(·), α = 1, 2 are periodic functions of each variable with period
π. Therefore, the function f2(·, ·), defined by (6.1) is a periodic function of each six
variables with period π. By condition (2.2), we obtain H12f2 = 0 for any f2 ∈ L0.
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In particular, from here it follows that H12f
(n)
2 = 0 for any n ∈ N. Therefore, the

numbers E1, . . . , En, . . . are eigenvalues of H and the corresponding eigenvectors have
the form: f (n) = (0, f

(n)
2 ), n ∈ N.

If minp∈T3 ∆(p ; 0) ≥ 0, then by Theorem 2.2 we have minσess(H) = 0. In this
case the set {En : n ∈ N} is located in below the bottom of the essential spectrum
of H and limn→∞En = 0. Let minp∈T3 ∆(p ; 0) < 0 and maxp∈T3 ∆(p ; 0) ≥ 0. Then
Theorem 2.2 implies that σess(H) ∩ (−∞;M ] = [a;M ] with a < 0. Hence, the count-
able (infinite) part of the set {En : n ∈ N} is located in the essential spectrum of H.
If maxp∈T3 ∆(p ; 0) < 0, then σess(H)∩ (−∞;M ] = [a; b]∪ [0;M ], b < 0. It means that
the countable (infinite) part of the set {En : n ∈ N} located in (b; 0). Theorem 2.4 is
proved.

7. EXAMPLE

We prove one more assertion.

Lemma 7.1. Let v0(·) be any continuous function satisfying condition (2.2) and

w1(p) := ε(p) + 1, v(p) :=
√
λv0(p), λ > 0.

Set

λ0 :=



∫

T3

v0(s)2ds

ε(s)



−1

, λ1 := 7



∫

T3

v0(s)2ds

ε(p) + ε(s)



−1

.

Then the following assertions hold:

(i) if λ ∈ (0;λ0], then min
p∈T3

∆(p ; 0) ≥ 0,

(ii) if λ ∈ (λ0;λ1], then min
p∈T3

∆(p ; 0) < 0 and max
p∈T3

∆(p ; 0) ≥ 0,

(iii) if λ ∈ (λ1;∞), then max
p∈T3

∆(p ; 0) < 0.

Proof. First we recall that for any p ∈ T3 the relations
∫

T3

v0(s)2ds

ε(s)
−
∫

T3

v0(s)2ds

ε(p) + ε(s)
= ε(p)

∫

T3

v0(s)2ds

(ε(p) + ε(s))ε(s)
≥ 0,

∫

T3

v0(s)2ds

6 + ε(s)
−
∫

T3

v0(s)2ds

ε(p) + ε(s)
= (ε(p)− 6)

∫

T3

v0(s)2ds

(ε(p) + ε(s))(6 + ε(s))
≤ 0

hold. Therefore,

min
p∈T3

∆(p ; 0) = 1− λλ−10 and max
p∈T3

∆(p ; 0) = 7− 7λλ−11 .

From here directly follows assertions (i)–(iii) of the Lemma 7.1.
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