PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chromium Ions Removal by Capacitive Deionization Process: Optimization of the Operating Parameters with Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An innovative desalination method called electrosorption or capacitive deionization (CDI) has significant benefits for wastewater treatment. This process is performed by using a carbon fiber electrode as a working electrode to remove hexavalent chromium ions from an aqueous solution. The pH, NaCl concentration, and cell voltage were optimized using the Box-Behnken experimental design (BDD) in response surface methodology (RSM) to study the effects and interactions of selected variables. To attain the relationship between the process variables and chromium removal, the experimental data were subjected to an analysis of variance and fitted with a quadratic model. The optimum conditions to remove Cr(VI) ions were: pH of 2, a cell voltage of 4.3V, and NaCl concentration of 1.4 g/L. This study demonstrated that the carbon fiber electrode was very efficient in Cr(VI) ions removal and the BBD methodology was a practical and effective strategy for predicting the results of various experimental conditions during a CDI process for the removal of chromium ions.
Rocznik
Strony
51--65
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
  • Department of Chemical Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
  • 1. Ahmadi A., Heidarzadeh S., Mokhtari A.R., Darezereshki E., Harouni H.A. 2014. Optimization of heavy metal removal from aqueous solutions by maghemite (γ-Fe2O3) nanoparticles using response surface methodology. Journal of Geochemical Exploration., 147, 151–158.
  • 2. Avila M., Burks T., Akhtar F., Göthelid M., Lansåker P.C., Toprak M.S., Muhammed M., Uheida A. 2014. Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions. Chemical Engineering Journal., 245, 201–209.
  • 3. Ayoubi-Feiz B., Aber S., Khataee A., Alipour E. 2014. Electrosorption and photocatalytic one-stage combined process using a new type of nanosized TiO2/activated charcoal plate electrode. Environmental Science and Pollution Research., 21, 8555–8564.
  • 4. Ba D., Boyaci I.H. 2007. Modeling and optimization i: Usability of response surface methodology. Journal of Food Engineering., 78, 836–845.
  • 5. Barabadi H., Honary S., Ebrahimi P., Alizadeh A., Naghibi F., Saravanan M. 2019. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorganic and Nano-Metal Chemistry., 49, 33–43.
  • 6. Barrera-Díaz C.E., Lugo-Lugo V., Bilyeu B. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. Journal of Hazardous Materials., 223–224, 1–12.
  • 7. Baseri H., Tizro S. 2017. Treatment of nickel ions from contaminated water by magnetite based nanocomposite adsorbents: Effects of thermodynamic and kinetic parameters and modeling with Langmuir and Freundlich isotherms. Process Safety and Environmental Protection., 109, 465–477.
  • 8. Chen L., Wang C., Liu S., Zhu L. 2019. Investigation of adsorption/desorption behavior of Cr(VI) at the presence of inorganic and organic substance in membrane capacitive deionization (MCDI). Journal of Environmental Sciences (China)., 78, 303–314.
  • 9. Chen R., Sheehan T., Ng J.L., Brucks M., Su X. 2020. Capacitive deionization and electrosorption for heavy metal removal. Environmental Science: Water Research and Technology., 6, 258–282.
  • 10. Chen Y., Peng L., Zeng Q., Yang Y., Lei M., Song H., Chai L., Gu J. 2015. Removal of trace Cd(II) from water with the manganese oxides/ACF composite electrode. Clean Technologies and Environmental Policy., 17, 49–57.
  • 11. Chockalingam N.M.K., Kalaiselvan R.P.K. 2020. Optimization of CNC-WEDM Parameters for AA2024 / ZrB2 in situ Stir Cast Composites Using Response Surface Methodology. Arabian Journal for Science and Engineering.
  • 12. Desta M.B. 2013. Batch sorption experiments: Langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (eragrostis tef) agricultural waste. Journal of Thermodynamics., 1.
  • 13. Gaikwad M.S., Balomajumder C. 2017. Simultaneous electrosorptive removal of chromium(VI) and fluoride ions by capacitive deionization (CDI): Multicomponent isotherm modeling and kinetic study. Separation and Purification Technology., 186, 272–281.
  • 14. Garg U.K., Kaur M.P., Sud D., Garg V.K. 2009. Removal of hexavalent chromium from aqueous solution by adsorption on treated sugarcane bagasse using response surface methodological approach. Desalination., 249, 475–479.
  • 15. Glaisher J.W.L. 1872. The method of least squares [5]. Nature., 6, 329.
  • 16. Goharshadi E.K., Moghaddam M.B. 2015. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: Kinetic and thermodynamic studies. International Journal of Environmental Science and Technology, 12, 2153–2160.
  • 17. Hasan J.T., Salman R.H., 2021a. Electrosorption of cadmium ions from the aqueous solution by a MnO2/carbon fiber composite electrode. Desalination and Water Treatment, 243, 187–199.
  • 18. Hasan J.T., Salman R.H. 2021b. Preparation of nanostructured MnO2/carbon fiber composite electrode for removal of Cu2+ions from aqueous solution by electrosorption process. AIP Conference Proceedings, 2372.
  • 19. Hasan S.H., Ranjan D., Talat M. 2010. of Hexavalent Chromium: Optimization of Process. BioResources, 5, 563–575.
  • 20. Hou C.H., Huang C.Y. 2013. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124–129.
  • 21. Huang L., Xue J., Jin F., Zhou S., Wang M., Liu Q., Huang L. 2014. Study on mechanism and influential factors of the adsorption properties and regeneration of activated carbon fiber felt (ACFF) for Cr(VI) under electrochemical environment. Journal of the Taiwan Institute of Chemical Engineers, 45, 2986–2994.
  • 22. Islam A., Nikoloutsou Z., Sakkas V. 2010. International Journal of Environmental Statistical optimisation by combination of response surface methodology and desirability function for removal of azo dye from aqueous solution. International Journal of Environmental Analytical Chemistry, 90, 37–41.
  • 23. Jia B., Zhang W. 2016. Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review. Nanoscale Research Letters., 11, 1–25.
  • 24. Johnson A.M., Venolia A.W., Newman J., Wilbourne R.G., Wong C.M., Gillam W.S., Johnson S., Horowitz R.H. 1970. Electrosorb Process for Desalting Water, Office of Saline Water Research and Development Progress Report No. 516, US Dept. Interior Pub., 200, 31.
  • 25. Kimbrough D.E., Cohen Y., Winer A.M., Creelman L., Mabuni C. 1999. A critical assessment of chromium in the environment. Critical reviews in environmental science and technology., 29, 1–46.
  • 26. Kunwar P., Singh A.K., Singh U.V., Verma P. 2012. Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box-Behnken design. Environmental Science and Pollution Research., 19, 724–738.
  • 27. Kv B., Bm N., Mnk H., Krishna R.H. 2017. An Efficient Removal of Toxic Cr(VI) from Aqueous Solution by MnO2 Coated Polyaniline Nanofibers: Kinetic and Thermodynamic Study. Journal of Environmental & Analytical Toxicology, 7.
  • 28. Liu Y.X., Yuan D.X., Yan J.M., Li Q.L., Ouyang T. 2011. Electrochemical removal of chromium from aqueous solutions using electrodes of stainless steel nets coated with single wall carbon nanotubes. Journal of Hazardous Materials., 186, 473–480.
  • 29. Majeed N. S.,Naji D. M., 2018. Statistical analysis of the removal of chromium(VI) by Iron Oxide Nanoparticals(Fe3O4). Journal of engineering., 24, 62–79.
  • 30. Mashile P.P., Dimpe M.K., Nomngongo P.N. 2019. Toxic / Hazardous Substances and Environmental Engineering Application of waste tyre-based powdered activated carbon for the adsorptive removal of cylindrospermopsin toxins from environmental matrices: Optimization using response surface methodology and. Journal of Environmental Science and Health, Part A., 0, 1–7.
  • 31. Menke W. 2015. Review of the Generalized Least Squares Method. Surveys in Geophysics., 36, 1–25.
  • 32. Mohanraj P., Allwin Ebinesar J.S.S., Amala J., Bhuvaneshwari S. 2020. Biocomposite based electrode for effective removal of Cr (VI) heavy metal via capacitive deionization. Chemical Engineering Communications., 207, 775–789.
  • 33. Ölmez T. 2009. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. Journal of Hazardous Materials., 162, 1371–1378.
  • 34. Peng H., Leng Y., Guo J. 2019. Electrochemical removal of chromium (VI) from wastewater. Applied Sciences (Switzerland), 9.
  • 35. Polat S., Sayan P. 2019. Application of response surface methodology with a Box–Behnken design for struvite precipitation. Advanced Powder Technology., 30, 2396–2407.
  • 36. Porada S., Borchardt L., Oschatz M., Bryjak M., Atchison J.S., Keesman K.J., Kaskel S., Biesheuvel P.M., Presser V. 2013. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy and Environmental Science., 6, 3700–3712.
  • 37. Rana-Madaria P., Nagarajan M., Rajagopal C., Garg B.S. 2005. Removal of chromium from aqueous solutions by treatment with carbon aerogel electrodes using response surface methodology. Industrial and Engineering Chemistry Research., 44, 6549–6559.
  • 38. Roberts E.P.L., Yu H. 2002a. Chromium removal using a porous carbon felt cathode. Journal of Applied Electrochemistry., 32, 1091–1099.
  • 39. Roberts E.P.L., Yu H. 2002b. Chromium removal using a porous carbon felt cathode, 1091–1099.
  • 40. Rodrigues P.M.S.M., Esteves da Silva J.C.G., Antunes M.C.G. 2007. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine. Analytica Chimica Acta., 595, 266–274.
  • 41. Singh H., Sonal S., Mishra B.K. 2018. Hexavalent chromium removal by monopolar electrodes based electrocoagulation system: optimization through Box–Behnken design. Journal of Water Supply: Research and Technology—AQUA., 67, 147–161.
  • 42. Su X., Kushima A., Halliday C., Zhou J., Li J., Hatton T.A. 2018. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nature Communications., 9.
  • 43. Sun Z., Chai L., Liu M., Shu Y., Li Q., Wang Y., Qiu D. 2018. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization. Chemosphere, 195, 282–290.
  • 44. Theydan S. K., 2018. Effect of process variables, adsorption kinetics and equilibrium studies of hexavalent chromium removal from aqueous solution by date seeds and its activated carbon by ZnCl2. Iraqi Journal of Chemical and Petroleum Engineering., 19, 1–12.
  • 45. Wang H., Na C. 2014. Binder-free carbon nanotube electrode for electrochemical removal of chromium. ACS Applied Materials and Interfaces, 6, 20309–20316.
  • 46. Zhang X., Zuo K., Zhang X., Zhang C., Liang P. 2020. Selective ion separation by capacitive deionization (CDI) based technologies: A state-of-the-art. review. Environmental Science: Water Research and Technology, 6, 243–257.
  • 47. Zhang Y., Feng H., Wu X., Wang L., Zhang A., Xia T., Dong H., Li X., Zhang L. 2009. Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34, 4889–4899.
  • 48. Zhao X., Jia B., Sun Q., Jiao G., Liu L., She D. 2018. Removal of Cr+6 ions from water by electrosorption on modified activated carbon fibre felt. Royal Society Open Science, 5.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d54cc093-3f32-42a6-97c7-c105e8015d4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.