Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zastosowania Internetu Rzeczy w egzoszkieletach ręki
Języki publikacji
Abstrakty
Hand therapy using a novel robotic exoskeleton can reduce motor deficits and improve functional recovery in patients. Robotic therapy can therefore effectively complement standard rehabilitation by providing therapeutic support to patients. The group of hand exoskeletons is at the beginning of its development and requires further research, and supplementing it with Internet of Things technologies will further increase its capabilities. The aim of this article is to determine the current state of research and development opportunities in this area.
Terapia ręki z wykorzystaniem nowatorskiego exoskeleton robotycznego może zmniejszyć deficyty motoryczne i poprawić odzyskiwanie funkcji u pacjentów. Terapia robotyczna może zatem skutecznie uzupełniać standardową rehabilitację zapewniając wsparcie terapeutyczne pacjentom. Grupa hand exoskeletons znajduje się na początku swojego rozwoju i wymaga dalszych badań, a uzupełnienie jej o technologie Internetu Rzeczy dodatkowo zwiększy jej możliwości. Celem artykułu jest określenie obecnego stanu badań i mozliwości rozwojowych w tym zakresie.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
38--41
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- Kazimierz Wielki University, Faculty of Mechatronics Kopernika 1, 85-074 Bydgoszcz
autor
- Kazimierz Wielki University, Faculty of Mechatronics Kopernika 1, 85-074 Bydgoszcz
autor
- Kazimierz Wielki University, Faculty of Computer Science Kopernika 1, 85-074 Bydgoszcz
Bibliografia
- 1.Jargan P., Gvk S, Rao M, Bapat J, Das D.XoRehab: IoT Enabled Wheelchair based Lower Limb Rehabilitation System. Annu Int Conf IEEE Eng Med Biol Soc. 2023, 2023, 1-5. doi: 10.1109/EMBC40787.2023.10340505.
- 2.Falkowski P., Osiak T., Wilk J., Prokopiuk N., Leczkowski B., Pilat Z., Rzymkowski C. Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation.Sensors 2023, 23(2), 911. doi: 10.3390/s23020911.
- 3.Ratschat A.,Lomba T.M.C., Gasperina S.D., Marchal-Crespo L. Development and Validation of a Kinematically Accurate Upper-Limb Exoskeleton DigitalTwin for Stroke Rehabilitation. IEEE Int Conf Rehabil Robot. 2023, 2023:1-6. doi: 10.1109/ICORR58425.2023.10304719.
- 4.Babaiasl M., Mahdioun S.H, Jaryani P., Yazdani M. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disabil Rehabil Assist Technol. 2016, 11(4), 263-80. doi: 10.3109/17483107.2014.1002539.
- 5.Kuo L.C., Yang K.C., Lin Y.C., Lin Y.C., Yeh C.H., Su F.C., Hsu H.Y. Internet of Things (IoT) Enables Robot-Assisted Therapy as a Home Program for Training Upper Limb Functions in Chronic Stroke: A Randomized Control Crossover Study. Arch Phys Med Rehabil. 2023, 104(3), 363-371. doi: 10.1016/j.apmr.2022.08.976.
- 6.Pavón-Pulido N., López-Riquelme J.A., Feliú-Batlle J.J.IoT Architecture for Smart Control of an Exoskeleton Robot in Rehabilitation by Using a Natural User Interface Based on Gestures.J Med Syst. 2020, 44(9), 144. doi: 10.1007/s10916-020-01602-w.
- 7.de a Iglesia D.H., Mendes A.S., González G.V., Jiménez-Bravo D.M., de Paz Santana J.F.Connected Elbow Exoskeleton System for Rehabilitation Training Based on Virtual Reality and Context-Aware.Sensors2020, 20(3), 858. doi: 10.3390/s20030858.
- 8.Veerbeek J.M., Langbroek-Amersfoort A.C., van Wegen E.E., Meskers C.G., Kwakkel G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil Neural Repair. 2017, 31(2), 107-121. doi: 10.1177/1545968316666957.
- 9.Adomavičienė A., Daunoravičienė K., Kubilius R., Varžaitytė L., Raistenskis J. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Medicina, 2019, 55(4), 98. doi: 10.3390/medicina55040098.
- 10.Mikołajczyk T., Kłodowski A., Mikołajewska E., Walkowiak P., Berjano P., Villafañe J.H., Aggogeri F., Borboni A., Fausti D., Petrogalli G. Design and control of system for elbow rehabilitation: Preliminary findings. Advances in Clinical and Experimental Medicine2018, 27(12), 1661-1669.
- 11.Rojek I., Mikołajewski D., Dostatni E., Kopowski J.Specificity of 3D Printing and AI-Based Optimization of Medical Devices Using the Example of a Group of Exoskeletons.Appl. Sci.2023,13,1060. https://doi.org/10.3390/app13021060.
- 12.Kopowski J., RojekI., Mikołajewski D., Macko M.m3D printed hand exoskeleton-own koncept. Advances in Manufacturing II: Volume 1-Solutions for Industry 4.0, 298-306.
- 13.Czeczot G., Rojek I., Mikołajewski D.. Sangho B. AI in IIoT Management of Cybersecurity for Industry4.0 and Industry 5.0 Purposes. Electronics2023, 12,3800. https://doi.org/10.3390/electronics12183800.
- 14.Rojek-Mikołajczak I. Wspomaganie procesów podejmowania decyzji i sterowania w systemach o różnej skali złożoności z udziałem metod sztucznej inteligencji. Wydawnictwo Uniwersytetu Kazimierza Wielkiego2010.
- 15.Prokopowicz P. Methods based on ordered fuzzy numbers used in fuzzy control. Proceedings of the Fifth International Workshop on Robot Motion and Control, 2005. RoMoCo'05. 2005, pp. 349-354.
- 16.Kawala-Janik A., Podpora M., Pelc M., Piątek P., Baranowski J. Implementation of an inexpensive EEG headset for the pattern recognition purpose. 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS) 2013, pp. 399-403.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d546b1a2-5550-461f-9630-efcf60a8980b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.