PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Consideration of quantitative risk reduction and risk achievement measures in safe NPP design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH 2023 (22-24 September 2023 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
In the models developed by probabilistic safety analyses (PSA) and in their applications associated with nuclear power plants (NPPs), the risk importance of a particular feature can be, most generally, divided into two categories: importance with respect to the risk-increase potential and importance with respect to the risk-decrease potential. A representative measure of the first category is risk achievement worth (RAW), while a representative measure of the second category is risk reduction worth (RRW). The present paper discusses the use of RAW and RRW in achieving safe design and points out some implications of their mutual dependency on the selection of a risk-reduction strategy. A simple example is provided to illustrate the differences between the two basic strategies and point out to the main issues and conclusions.
Czasopismo
Rocznik
Strony
119--124
Opis fizyczny
Bibliogr. 15 poz., rys.
Bibliografia
  • 1. International Atomic Energy Agency. (2010). Development and application of level 1 probabilistic safety assessment for nuclear power plants: Specific safety guide. Vienna: IAEA. (SSG-3).
  • 2. American Society of Mechanical Engineers. (2009). Standard for level 1/large early release frequency probabilistic risk assessment for nuclear power plant applications, an American National Standard. New York: ASME. (ASME/ANS RA-Sa–2009).
  • 3. U.S. Nuclear Regulatory Commission. (2018). An approach for using probabilistic risk assessment in risk-informed decisions on plant-specific changes to the licensing basis, Revision 3. Washington D.C.: U.S. NRC. (Regulatory Guide 1.174).
  • 4. Fullwood, R. R., & Hall, R. E. (1988). Probabilistic risk assessment in the nuclear power industry, fundamentals and applications. New York: Pergamon Press.
  • 5. Henley, E., & Kumamoto, H. (1981). Reliability engineering and risk assessment. Upper Saddle River: Prentice Hall.
  • 6. Barlow, R. E., & Proschan, F. (1975). Statistical theory of reliability and life testing: probability models. New York: Holt, Rinehart and Winston, Inc. 7. Vesely, W. E., Davis, T. C., Denning, R. S., & Saltos, N. (1983). Measures of risk importance and their applications. Washington D.C.: U.S. NRC. (NUREG/CR-3385).
  • 8. Vesely, W. E., Goldberg, F. F., Roberts, N. H., & Haasl, D. F. (1981). Fault tree handbook. Washington D.C.: U.S. NRC. (NUREG-0492).
  • 9. Papazoglou, I. A., Bari, R. A., Buslik, A. J., Hall, R. E., Ilberg, D., Samanta, P. K., Teichmann, T., Youngblood, R. W., El-Bassioni, A., Fragola, J., Lofgren, E., & Vesely, W. (1984). Probabilistic safety analysis procedures guide. Washington D.C.: U.S. NRC. (NUREG/CR2815).
  • 10. Cheok, M. C., Parry, G. W., & Sherry, R. R. (1998). Use of importance measures in risk-informed regulatory applications. Reliab. Eng. Syst. Saf., 60(3), 213–226. DOI: S0951-8320(97)00144-0.
  • 11. Kim, K., Kang, D. I., & Yang, J. -E. (2005). On the use of the balancing method for calculating component RAW involving CCFs in SSC categorization. Reliab. Eng. Syst. Saf., 87(2), 233–242. DOI: 10.1016/j.ress.2004.04.017.
  • 12. Bäckström, O., Krcal, P., & Wang, W. (2016). Two interpretations of the risk increase factor definition. In L. Walls, M. Revie & T. Bedford (Eds.), Risk, reliability and safety: Innovating theory and practice (pp. 2816–2822). Boca Raton, FL: CRC Press.
  • 13. Vrbanic, I., Samanta, P., & Basic, I. (2017). Risk importance measures in the design and operation of nuclear power plants. New York: ASME Press.
  • 14. Vrbanic, I., Samanta, P., & Basic, I. (2018). Some implications of theoretical relation between RAW and RRW measures on risk reduction strategies. J. Phys. Sci. Appl., 8(3), 38–45. DOI: 10.17265/2159-5348/2018.03.005.
  • 15. Nuclear Energy Institute. (2005). 10 CFR 50.69 SSC Categorization guideline, Revision 0. U.S.: NEI. (NEI 00-04).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d54006c1-e628-431f-8bb6-1a713d22d70f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.