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noise and outliers were preliminarily reduced by us-
ing statistical and low-pass filters.

Let us henceforth consider a time series for each
spatial dimension of left to right (LR), cephalocau-
dal (CC), and anteroposterior (AP) axes as follows.

{y(1),y(2), · · · ,y(t), · · ·} (1)

where {y(t)} (mm) denotes a tumor coordinate at
discrete time t.

Figure 1 shows the three data sets of the lung tu-
mor motion. As is clear from this figure, the motion
has a periodical nature mainly caused by patient’s
respiration. Therefore, we can also consider that
the tumor motion is a kind of periodical function of
time. Then a sinusoidal periodic model of the time
varying nature of the motion can be given as

y(t) = A(t)cosϑ(t) (2)

where A(t) and ϑ(t) are instantaneous amplitude
and instantaneous phase at time t, respectively.
Note that, a temporal differentiation of the phase
is not constant, and changes with time in the model.
(i.e., dϑ(t)/dt ̸= const.).

Such quasi-periodical nature of the motion can
be confirmed by observing the period of the time
series. For example, period s(t) as time interval be-
tween a peak and next peak differs each other even
if the amplitude variation A(t) is sufficiently small
as shown in figure 2. An average s̄ of the period
is about 90 (3 s) for the three data sets used in this
paper.
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Figure 1. Three clinical data of 3D time series of
lung tumor motion for different treatment fractions.

These tumor motions have a quasi-periodical
nature of the average period s̄ = 90 (3 s).
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Figure 2. An example of time varying period s2(t)
obtained as intervals among peaks of

cephalocaudal motion y2(t) of DATA #1. Peak to
peak periods are s2(t) = 87 at time t = 711 and

s2(t) = 82 at time t = 793, respectively.

3 Prediction Methods

In this section, prediction methods based on a
seasonal time series model are described. First we
introduce a traditional seasonal method and explain
its limitations on prediction of the lung tumor mo-
tion. Then, the seasonal prediction method is ex-
tended to take into account a time-varying nature of
the periodical motion. At last, we propose a new
prediction system by using the extended seasonal
prediction methods.

3.1 Seasonal Prediction Method: Seasonal
Autoregressive Model

Seasonal autoregressive integrated moving-
average (SARIMA) model is a general expression
of the time series which varies periodically (i.e., a
periodical function of time such as trigonometric
function).

The SARIMA model of the time series
{x(0),x(1), . . . ,x(t)} with period s can be expressed
as follows.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dx(t) = θ(B)Θ(Bs)ε(t)
(3)

where d and D are respectively the order of lo-
cal and seasonal integrated components, ε(t) is the
Gaussian noise of which mean and variance are 0
and σ2, respectively, and B is a delay operator de-
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Abstract

In this paper, fuzzy models with orthonormal basis functions (OBF) framework are em-
ployed for modeling the nonlinear dynamics of biological treatment processes. These
models are consisting of a linear part describing the system dynamics (Laguerre filters)
followed by a non-linear static part (fuzzy system). The training procedure contains of
two main steps: 1) obtaining the optimum time-scale and the order of truncated Laguerre
network as the linear part and 2) defining membership functions, corresponding rules and
adjusting the consequent parameters of fuzzy system as the nonlinear part. A comparison
between the responses of the developed model and the original plant was performed in
order to validate the accuracy of the developed model.

1 Introduction

Biological treatment processes are one of the
most important parts of wastewater treatment sys-
tems, which are widely employed due to their ad-
vantages in terms of low capital investment, low
operating costs and high flexibility to be used for
different types of wastewater [1].

Enhancing the performances of wastewater
treatment plants (WWTP) has been taken into con-
sideration in recent years, in order to improve efflu-
ent water qualities. In this regard, employing more
expert control strategies is highly in demand to im-
prove the reliability and availability of treatment

plants with higher operation performance. Better
control quality is always required more information
from the plant performances. In this case, gathering
the adequate information about the system dynam-
ics would be the main key [1].

Inherent nonlinearities of bioprocess systems,
large variations in wastewater compositions, con-
centrations, and influent flow rates are the main rea-
sons that make the modeling process of such sys-
tems very complicated [2].

In general, fundamental rules of biological and
chemical reactions can be employed for developing
the analytical plant model to describe the behavior

 – 356



344 A. Chaibakhsh, N. Chaibakhsh, M. Abbasi and A. Norouzin

of WWTP. However, these models could be very
complicated in structure with many tunable param-
eters that have to be adjusted with respect to bound-
aries, inputs and outputs [3].

System identification techniques can be also
employed to develop black-box models based on
measured data obtained from real performance of
the plant [4-5]. Many different methodologies have
been developed and applied successfully for non-
linear system modeling.

A common class of nonlinear models frequently
used for system identification is the NARX (Non-
linear AutoRegressive with eXogenous input) mod-
els. One of the most effective approaches to deal
with the system nonlinearities is employing mod-
els with the block-oriented structures [6-7]. Wiener
type model is a best-known member of the block-
oriented model class, which consists of a linear dy-
namic part followed by a static nonlinear element
[8]. This topology can be used for developing dy-
namic fuzzy system [9]. The TSK (Takagi-Sugeno-
Kang) types of fuzzy models particularly come to
consideration to deal with systems nonlinearities
and uncertainties [10]. In dynamic fuzzy structure,
the model’s output at a given time instant is esti-
mated based on a finite number of the past input and
output signals. This structure is still suffering from
the usual drawbacks of the NARX such as require-
ments for identifying the past terms of process vari-
ables and high computational efforts [8][11]. Em-
ploying orthonormal basis functions such as the La-
guerre or Kautz functions as the linear dynamic part
of Wiener models could be very helpful to cope
with these problems [8]. For the systems with slow
dynamics and non-oscillatory behaviors, the La-
guerre network based models have a great perfor-
mance [12]. Having much smaller number of tun-
able parameters and no requirement for identifying
the past terms of the input variables are some ad-
vantages of Laguerre network based models. These
could considerably reduce the computational efforts
in identification process [8].

This work presents an application of Laguerre
network based fuzzy modeling approach for de-
scribing the nonlinear behavior of aerobic WWTPs.
The proposed model is constituted by a linear part
describing the system dynamics (Laguerre filters)
followed by a non-linear static part (fuzzy system),
which are trained based on the plant performances

at different operating conditions. The optimal time
scales for linear parts were defined in order to min-
imize the modeling error.

The number of inputs for fuzzy part was se-
lected based on step response of plant with respect
to optimum pole parameters.

For training the nonlinear part of the models,
fuzzy c-means (FCM) clustering technique was em-
ployed to define the structure of the fuzzy sys-
tem, where the corresponding consequent param-
eters were adjusted by least-square methods. A
comparison between the responses of the developed
model and the original plant was performed in or-
der to validate the accuracy of the developed model.
In addition, in order to show the advantages of the
modeling approach, a comparison between the per-
formances of the proposed method and others re-
cent modeling approach was performed.

In the next section, the structure of Laguerre-
based fuzzy model is presented. It is followed
by training procedure of the process model in sec-
tion 3. A brief description of the aerobic acti-
vated sludge wastewater treatment process and its
dynamic behavior are presented in section 4. A de-
tailed discussion on simulation experiments and the
obtained results comes in Section 5. The last sec-
tion is the conclusion and suggestions.

2 Laguerre-based fuzzy system

A nonlinear system can be described by a
NARX model as a discrete-time nonlinear mapping
on some previous measured outputs and inputs as
follows,

y(k) = f (u(k), u(k−1), . . . , u(k−nu),
y(k−1), . . . , y(k−ny))

(1)

where nu and ny are the number of past terms for
input u and output y, respectively, that represent the
dynamic order of the system. The function f() is a
nonlinear mapping function that can be considered
as neural networks, fuzzy systems, polynomials and
etc. A combination of Laguerre basis filters as the
dynamic linear part and fuzzy logic systems as the
nonlinear static part of a Wiener-type model is pro-
posed as an appropriate method to nonlinear system
identification. An improved representation of La-
guerre network based fuzzy systems is proposed in
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scales for linear parts were defined in order to min-
imize the modeling error.

The number of inputs for fuzzy part was se-
lected based on step response of plant with respect
to optimum pole parameters.

For training the nonlinear part of the models,
fuzzy c-means (FCM) clustering technique was em-
ployed to define the structure of the fuzzy sys-
tem, where the corresponding consequent param-
eters were adjusted by least-square methods. A
comparison between the responses of the developed
model and the original plant was performed in or-
der to validate the accuracy of the developed model.
In addition, in order to show the advantages of the
modeling approach, a comparison between the per-
formances of the proposed method and others re-
cent modeling approach was performed.

In the next section, the structure of Laguerre-
based fuzzy model is presented. It is followed
by training procedure of the process model in sec-
tion 3. A brief description of the aerobic acti-
vated sludge wastewater treatment process and its
dynamic behavior are presented in section 4. A de-
tailed discussion on simulation experiments and the
obtained results comes in Section 5. The last sec-
tion is the conclusion and suggestions.

2 Laguerre-based fuzzy system

A nonlinear system can be described by a
NARX model as a discrete-time nonlinear mapping
on some previous measured outputs and inputs as
follows,

y(k) = f (u(k), u(k−1), . . . , u(k−nu),
y(k−1), . . . , y(k−ny))

(1)

where nu and ny are the number of past terms for
input u and output y, respectively, that represent the
dynamic order of the system. The function f() is a
nonlinear mapping function that can be considered
as neural networks, fuzzy systems, polynomials and
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dynamic linear part and fuzzy logic systems as the
nonlinear static part of a Wiener-type model is pro-
posed as an appropriate method to nonlinear system
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Nomenclature
a order of truncated Laguerre network

Ai, j membership function
bi Laguerre coefficient
c number of the clusters
D distance

DI(t) dilution rate (flow/basin volume) (h−1)
DOin inlet dissolved oxygen cons (mg/l)

DOmax maximum dissolved oxygen concentration(mg/l)
DOr dissolved oxygen concentration in the recycle flow (mg/l)

e error
f() mapping function

H(z) discrete-time transfer function
J Laguerre time-scale performance index

Jm clustering objective function
K0 model constant
Kd endogenous decay constant (mg/l)

KDO half oxygen saturation constant (mg/l)
Ks half-velocity constant (mg/l)

L(z) discrete-time Laguerre function
lk Laguerre signal
q cluster centers
q̃i optimum positions of cluster centers

QXB cluster validity function
r ratio of recycled to influent flow rate
Ri rule numbers
Sin inlet soluble substrate concentration (mg/l)
u(k) system input
V/Vr ratio between aeration basin and settling basin volume
W ratio of air flow rate to basin volume (h−1)
x unlabeled data set for clustering
Y growth rate

y(k) system output

Abbreviation
AAD average absolute deviation
DO dissolved oxygen

FCM fuzzy c-means clustering
FIR finite input response
FIS fuzzy interference system

LNBF Laguerre network based fuzzy system
LSE least-squares estimation
MAE mean absolute error
MISO multi input single output system
NARX Nonlinear AutoRegressive with eXogenous input

SSC soluble substrate concentration
TSK Takagi-Sugeno-Kang fuzzy type system

WWTP wastewater treatment processes
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Greek letters
γ oxygen transfer rate
α pole parameter
Θ consequent parameter matrix
Γ weighted input dataset matrix
ψ output target matrix
Λ the vector of membership degree
σ the center of Gaussian membership function
ζ the spread of Gaussian membership function

λi, j membership degree
λ̃i, j optimum membership degree
β ratio of waste to influent flow rate

µmax maximum specific growth rate (h−1)
µs specific growth rate (h−1)

reference [13], where the delay shift operators was
replaced by Laguerre basis filter as follows,

y(k) = f (l0(k)∗u(k), l1(k)∗u(k), ...
..., la(k)∗u(k),y(k−1))

(2)

where li(k) are Laguerre basis filters where the non-
linear mapping function f() is a TSK type fuzzy sys-
tem, which is illustrated in Figure 1. This model is
able to approximate the nonlinear systems by per-
forming an interpolation of local models via a fuzzy
inference mechanism. The antecedents are describ-
ing fuzzy regions in the input space, where the con-
sequents describe the local linear models in corre-
sponding fuzzy subspaces [14][9].

Figure 1. Laguerre network based fuzzy model

2.1 Laguerre filter

Discrete-time Laguerre functions as complete
orthonormal set in z-domain can be represented as
follows,

Li(z,a) =

√
1−α2

1−αz−1

(
−α+ z−1

1−αz−1

)i

i = 0,1,2, ...

(3)

where α∈{ℜ: |α|<1} is the pole dominant pa-
rameter that determines the rate of exponential de-
cay for Laguerre functions responses. This parame-
ter can be obtained through optimization or be cho-
sen by experiments [15].

For any linear discrete-time system, the transfer
function H(z) can be approximated by the limited
order of Laguerre polynomial as follows,

H(z) =
Y (z)
U(z)

=
a

∑
i=0

bi(α)Li(z,α) (4)

in which U(z) and Y(z) are input and output of
the system and bi (α) are the Laguerre coefficients
[15]. As a result, we have,

Y (z) =
a

∑
i=0

bi(α)Vi(z) (5)

and,

Vi(z) = Li(z,α)U(z) i = 0,1,2, ...,a (6)

The model is a Laguerre network, which consists of
a first-order low-pass factor and (i-1)th-order identi-
cal all-pass filters. The Laguerre filters Li(z,α) will
turn to regular delay operators as α=0 [15].

For each region at input space, a local linear model
can be developed by using the polynomial presented
in Eq. (5). The local linear models can be interpo-
lated by means of fuzzy inference mechanism that
is presented in next section
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2.2 Neuro-fuzzy architecture

The rule-base of the model’s fuzzy part is rep-
resented by a set of if-then rules as follows [16],

Ri : i f v0 is Ai,1 and ... va is Ai,a+1 and y(k−1) is Ai,a+2
then yi(k) = ∑a

j=0 bi, j v j(k)+bi(a+1) y(k−1)+bi(a+2)

where Ai, j is the membership function associated
with input variable v j. In this system, a linear com-
bination of the input variables are considered as the
conclusion functions of fuzzy rules. The fulfillment
degrees of the fuzzy rules are estimated through the
five layers of fuzzy system [16]. According to rules
Ri, the weighted sum average is obtained as follows,

y =
c

∑
i=1

yi w̄i (7)

where,

w̄i =
N

∏
j=1

Ai, j(.)

/
c

∑
i=1

[
N

∏
j=1

Ai, j(.)

]
(8)

and N is the number of inputs to the fuzzy sys-
tem that is equal to a+2. Also, c is the number of
fuzzy rules. The membership function Ai, j is con-
sidered to be Gaussian specified by the center σ and
the spread ζ,

Ai, j(xr) = exp(−((xr −ζi, j)
/

σi, j)
2) (9)

In the next section, the procedure for adjusting the
model parameters is presented.

3 Model parameters adjustment

The parameters and the structure of the model
have to be defined with respect to the collected data
from the performances of the plant. For this aim,
three following main steps are considered.

3.1 Laguerre pole placement

Optimum choice of pole parameter makes the
Laguerre filter capable to provide better approxi-
mations of system. This can be captured through
stable discrete systems approximating based on the
impulse responses, in both time and frequency do-
mains. In this regard, an analytical method is pro-
posed by Fu and Dumont to evaluate the optimum

time scale [17]. With respect to Eq. (4), for given
impulse response of a discrete system, h(n), we
have,

h(n) =
∞

∑
k=1

gk lk(n) (10)

where lk(n) is the Laguerre signal in time do-
main taken by the inverse z-transform of Lk(z,α) and
gk is the corresponding Laguerre coefficient. The
following performance index was considered to de-
termine the optimal Laguerre parameter,

J =
∞

∑
k=1

k g2
k (11)

In this performance index, the weight of each
additional Laguerre coefficient is linearly increased
that leads to a fast convergence rate. In [17], by
minimizing the performance index (11), an ana-
lytical expression for the optimal solution was ob-
tained. By defining,

M1 =
1

∥h∥2

∞

∑
n=0

nh2(n) (12)

and

M2 =
1

∥h∥2

∞

∑
n=0

n [∆h(n)]2 (13)

in which,

∥h∥2 =
∞

∑
n=0

h2(n) =
∞

∑
j=1

g2
k (14)

The optimal Laguerre parameter can be cap-
tured in terms of M1 and M2 as follows,

αopt =
2M1 −M2 −1

2M1 −1+
√

4M1M2 −M2
2 −2M2

(15)

In cases that exciting the system by an impulse in-
put is difficult, we can use alternative approaches
that employ arbitrary input signals to estimate the
optimal pole position [18]. However, no consider-
able differences in obtained results can be observed.
The order of Laguerre network can be chosen by a
simple step response test. More explanations are
presented in the next sections.
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3.2 Fuzzy system configuration

In this section, fuzzy c-means (FCM) cluster-
ing algorithm is employed to define the structure of
the fuzzy model. By using clustering techniques,
the complex nonlinear regions can be divided into
simpler subspaces. Integration of fuzzy system and
clustering methodologies that allow for subspaces
overlapping and accordingly smoother transitions
between operating regions [19].

The FCM algorithm partitions the data set into
c predefined subsets through optimizing an objec-
tive function, which indicates the desirability of
each c-partition. The data partitioning into clusters
depends on similarity/dissimilarity of each cluster
members, which is generally defined by the dis-
tance of data points from cluster centers [20].

The distance between qi and p j is defined
byD(qi,x j), where {qi} ⊂ Rsand {x j} ⊂ Rsare the
vector of cluster centers and unlabeled data set, re-
spectively. In order to find the best possible solu-
tion, the following objective function has to be min-
imized [20].

Minimize : Jm(Λ,Q)=
n

∑
j=1

c

∑
i=1

(λi, j)
m (Di j)

2 (16)

where λi, j is the membership of the jth data
point in the ith cluster. In Eq. (16), the fuzziness
degree of each cluster is controlled by the weight-
ing exponent m (1 ≤ m < ∞). Minimization of Jm is
performed by considering the following constraints
on the membership values that leads to the optimal
partition.

∀ j = 1...n,∀ i = 1...c,
∑c

i=1 λi, j = 1 and 0 ≤ λi, j ≤ 1
(17)

The optimal positions of cluster centers and the
corresponding membership functions can be cap-
tured using Eq. (18) and Eq. (19) via an iterative
procedure [20].

q̃i =
∑n

j=1(λi, j)
mx j

∑n
j=1(λi, j)m , 1 ≤ i ≤ c (18)

and

λ̃i, j =

[
c

∑
k=1

(
Di j

D jk

)2/(m−1)
]−1

, 1≤ i≤ c, 1≤ j ≤ n

(19)

While no further improvement is observed in
Jm(Λ,Q), the iteration will be stopped. Raising the
number of the clusters may increase the accuracy of
the model; however it could be led to models over-
fitting problems and the excessive computational
costs. To deal with this problem, it is suggested that
the number of the clusters be chosen through op-
timization [21]. In order to determine the optimal
number of clusters in the data set, a cluster validity
index can be employed. Many different validity in-
dexes are available that can be applied [22]. Here,
a validity function proposed by Xie and Beni [23]
was employed. We have,

QXB =
c

∑
i=1

n

∑
j=1

(λi, j)
m (Di j)

2

/
n min

i̸= j
(Di j)

2 (20)

The optimum number of cluster centers can be ob-
tained through an iterative algorithm [23]. In order
to increase the performance of the proposed algo-
rithm, some modifications have been considered in
the procedure, which are presented in Appendix A

3.3 Consequent parameters tuning

By defining the fuzzy membership functions
and corresponding fuzzy rules, the main require-
ment is that the parameters of fuzzy rules be ad-
justed. Here, the least-squares estimation (LSE)
technique is employed for adjusting the parameters
of consequent based on the plant data. For each
input-output pattern the Eq. 7 can be written as,

ψ(i) = Γ(i).Θ(i) (21)

where,

Θ(i) =
[

b1,0 b1,1 ... b1,N ... bc,0 bc,1 ... bc,N
]T

Γ(i) =
[

w̄1v(i)1 ... w̄1v(i)N−2 w̄1y(i) w̄1 ...

... w̄cv(i)c ... w̄cv(i)N−2 w̄cy(i) w̄c

]

(22)

and ψ is the output y at present time. In this
case, all input-output patterns can be defined as be-
low,

ΨM×1 = ΓM×(c+1)N .Θ(c+1)N×1 (23)

In this case, the parameters of consequent can
be obtained by minimizing the squared error as fol-
lows,

Θ = (ΓT Γ)−1ΓΨ (24)
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In order to increase the performance of training pro-
cess, the dataset are normalized by dividing each
variable by its maximum value to distribute data
over a range of [0, 1] or as the deviation from mean
values in the range of [-1,1]. This ensures none of
variables are dominant over the others during the
training phase.

4 Process description

A most common configuration for WWTP is
an aerobic biological treatment process, which gen-
erally consists of an aeration tank followed by a
settling tank. In Figure 2, the flow diagram for
the conventional activated sludge process is pre-
sented. In this process, in the presence of oxygen,
the activated sludge and organic matter (influent)
are biodegraded [24]. The simplified reaction for
the process is as follows,

organics + O2
aerobic microorganisms−→ CO2

+H2O + more aerobic microorganism
(25)

in which the organics are consumed by microor-
ganisms for preservation and are oxidized to CO2
and H2O. The mixture of treated wastewater and bi-
ological flocs are directed to a settling tank, where
biological solids are separated by gravity. The acti-
vated sludge flocs settle at the bottom of the settling
tank and the treated wastewater (effluent) leaves the
basin from top of the settling tank. Most part of set-
tled sludge is returned to aeration tank and a small
part is wasted [25].

Figure 2. Schematic representation of the aeration
unit

The performance of microorganisms can be
governed by controlling the dissolved oxygen con-
centration in aeration tank.

Many different nonlinear models have been pre-

sented for the process of transporting oxygen from
aeration system to the cells of microorganisms and
their metabolism. Here, we have employed a first
principle model given by [26] in order to describe
the unit dynamic behavior. The mass balance for
the concentration of biomass X(t) is expressed by
the following equation,

d X(t)
dt

= µs(t)X(t)−DI(t)(1+r)X(t)+rDI(t)Xr(t)

The mass balance for the concentration of sub-
strate S(t) is shown by Eq. (26).

d S(t)
dt =− µs(t)

Y X(t)−DI(t)(1+ r)S(t)+
DI(t)Sin(t)+ rDI(t)Sr(t)

(26)

The mass balance for the concentration of dis-
solved oxygen DO(t) can be captured as,

dDO(t)
dt =−K0µs(t)

Y X(t)−DI(t)(1+ r)DO(t)+
DI(t)DOin + γW (DOmax −DO(t))+ rDI(t)DOr(t)

By assuming a constant volume for the settling
tank, the mass balance equation for the recycled
biomass Xr(t) is obtained as,

d Xr(t)
dt

=
V
Vr

[DI(t)(1+r)(X(t)−DI(t)(β+r)Xx(t)]

According to the Monod’s relationship, the spe-
cific bacterial growth rate µs can be estimated as a
function of soluble substrate and biomass concen-
tration as follows,

µs(t) = µmax
S(t)

Ks +S(t)
DO(t)

KDO +DO(t)
−Kd (27)

The nominal values of Stoichiometric and kinetic
parameters of the model and the initial conditions
to run the simulations are presented in Appendix B.
Here, the air flow rate is considered as the manip-
ulated input, the inlet soluble substrate concentra-
tion and the dilution rate are the measureable dis-
turbance. Also, the other inputs are considered as
unmeasured disturbances. The concentration of dis-
solved oxygen is considered as the main plant out-
put, which required to be controlled. Due to very
slow dynamics of the plant, measurement noise was
neglected. The ranges of variations for the plant in-
puts are presented in Appendix B. The input-output
data obtained from the plant model running in the
full-scale are employed for system identification in
the next section
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The nominal values of Stoichiometric and 
kinetic parameters of the model and the initial 
conditions to run the simulations are presented 
in Appendix B. Here, the air flow rate is 
considered as the manipulated input, the inlet 
soluble substrate concentration and the dilution 
rate are the measureable disturbance. Also, the 
other inputs are considered as unmeasured 
disturbances. The concentration of dissolved 
oxygen is considered as the main plant output, 
which required to be controlled. Due to very 
slow dynamics of the plant, measurement noise 
was neglected. The ranges of variations for the 
plant inputs are presented in Appendix B. The 
input-output data obtained from the plant 
model running in the full-scale are employed 
for system identification in the next section 
 
5. Simulation Experiments and Results  

As it has been mentioned previously, the 
implementation of proposed identification 
algorithm is based on two main steps: 1) 
identifying the linear part that consists 
evaluating the optimum time scale and the 
order of truncated Laguerre network; 2) 
identifying the nonlinear part that consists 
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4.1 Simulation Experiments and Results

As it has been mentioned previously, the im-
plementation of proposed identification algorithm
is based on two main steps: 1) identifying the lin-
ear part that consists evaluating the optimum time
scale and the order of truncated Laguerre network;
2) identifying the nonlinear part that consists defin-
ing the fuzzy membership functions, corresponding
fuzzy rules and adjusting the consequent parame-
ters.

The required input-output information for iden-
tification process was captured by simulating the
dynamic equations presented in the previous sec-
tion. Simulation experiments were performed in
MATLAB Simulink environment. One input vari-
able (air flow rate) and two measurable disturbances
(dilution flow rate and inlet soluble substrate con-
centration) were selected as the main inputs for the
model.

In practice, a physical system can be approxi-
mated by the limited order Laguerre series. In this
case, in order to minimize the truncation error, the
time scale should be optimized for a given number
of filters. The optimum pole parameter can be es-
timated from a finite sequence of the impulse re-
sponses data. If h(n) is the impulse response of the
plant, the value of ||h||2 and respectively M1 and
M2 can be captured for N sequences of impulse re-
sponse by using Eqs. (12) to (14). In Table 1, the
optimum time scales (αopt) and corresponding pa-
rameters M1 and M2 are estimated for the inputs.
Here, the total number of samples are considered
to be N = 40 while the sampling interval is 0.1. In
Figure 3, the responses of Laguerre basis with re-
spect to the impulse changes in air flow rate (αopt =
0.2601) are presented.

Employing the step responses of the plant can
be helpful for defining the order of Laguerre net-
work. In Figure 4, the step responses of the plant
and corresponding Laguerre filters responses are
presented. As it is observed, for the higher stages
of Laguerre network, the coefficients are very small.
Furthermore, by increasing the number of Laguerre
bases filters the computational efforts for the non-
linear part identification will increase. Therefore,
with respect to Figure 4, considering a=3 would be
an appropriate selection for describing the dynam-
ics of the plant.

Table 1. Pole estimation for truncated Laguerre
networks

input M1 M2 αopt

air flow rate 21.5557 21.6137 0.2601
dilution rate 17.1954 17.5952 0.2515

inlet SSC 22.8093 22.7924 0.2613

Figure 3. Normalized impulse responses of the
Laguerre filters

Figure 4. The step responses of Laguerre bases
filters and plant

Defining the order of linear part and the optimal
pole position, the nonlinear part of the model can
be identified with respect to collected data. For this
propose, the plant was excited with uniform random
inputs. The air flow rate was varied every 10 hours
in the range of 50 to 100 (h−1), where the changes
in the dilution rate were produced every 20 hours in
the range of 0.07 to 0.08 (h−1). In addition, the in-
let SSC is considered to be changed in the range of
200 to 220 (mg/l) in a period of 4 hours. The input-
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duration of 500 hours with time interval 0.1. 
The first 3000 data points were employed in 
training stage, while a set of 2000 data points 
were used for validation purpose. In testing 
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in the dilution rate were produced every 20 hours in
the range of 0.07 to 0.08 (h−1). In addition, the in-
let SSC is considered to be changed in the range of
200 to 220 (mg/l) in a period of 4 hours. The input-
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output data used for nonlinear part identification in-
cluding the transient and steady state conditions is
presented in Figure 5. The system performance was
recorded for duration of 500 hours with time inter-
val 0.1. The first 3000 data points were employed in
training stage, while a set of 2000 data points were
used for validation purpose. In testing stage, real-
time simulations were employed for the developed
model assessment.

Figure 5. Input–output data for identifying the
non-linear (fuzzy) part

The data generated through excitation of the
plant are utilized for adjusting the nonlinear part
of the model. The FCM algorithm is employed to
define the optimal positions of cluster centers and
corresponding membership functions through Eqs.
(18) and (19). The optimal number of the clusters
is obtained on the normalized input-output data set
with respect to the cluster validity index presented
in Eq. (20) and its corresponding algorithm. The
cluster centers and corresponding region of each
cluster are shown in Figure 6. The optimal parame-
ters for membership functions are presented in Ap-
pendix C.

The number of fuzzy rules is determined by
the number of clusters. In this regard, consider-
ing seven fuzzy rules may be appropriate to cover
the entire range of operation. As a result, the non-
linear part of the model would be in the form of

a MISO FIS with five inputs and one output with
seven fuzzy rules, where for each FIS there are 42
parameters that have to be tuned. With respect to
recorded data, the parameters of consequent can be
adjusted by using the least square method presented
in Eq. (24). The characteristics of the fuzzy part of
the LNBF models are presented in Appendix C.

Figure 6. Cluster centers and corresponding
operating regions

Figure 7. Response of the developed model for
dissolved oxygen concentration

In order to validate the prediction accuracy of
the developed model, the responses of the proposed
model is compared with the responses of the plant
over a wide range of operation. Real-time simula-
tions are carried out while the plant is exposed to
measured and unmeasured disturbances. In Figure
7, the predicted values of dissolved oxygen (DO)
are presented for a period of 500 hours in both tran-
sient and steady state conditions. Simulation results
show that the responses of the proposed model are
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Table 2. Error functions for the LNBF Model

Max(|e|) Min(|e|) Mean AAD R2

0.6167 4.188e-8 -0.0069 0.0393 0.9986

Table 3. Error functions for comparing the modeling approaches

Max|(e)| Min|(e)| Mean AAD R2

DynamicFuzzy 0.4813 6.223e-5 0.0682 0.1403 0.9835
WienerWavelet 1.0223 2.684e-5 -0.0381 0.1533 0.9736
Wiener Poly 0.9514 2.977e-5 -0.0316 0.1669 0.9710

Wienersigmoid 1.0329 5.831e-5 -0.0314 0.1734 0.9680

very close to the original output. Furthermore, The
error functions of upper bound error Max(|e|), lower
bound error Min(|e|), mean absolute error MAE, av-
erage absolute deviation AAD(e) and correlation co-
efficient R2(e) are calculated, where the error is de-
fined as the difference between the response of the
plant and the response of the developed model. The
error functions for the developed model are pre-
sented in Table 2. In addition, in Fig. 8, a compari-
son between the correlation coefficients of the pre-
dicted values and the original output is performed.
Obtained results indicate the accuracy of the devel-
oped model in terms of less deviation between the
predicted and target values.

Figure 8. Correlation between the predicted and
target values

4.2 Comparing with other models

Here, some comparisons between the perfor-
mances of the LNBF modeling technique and other
recent modeling approaches have been carried out
in order to confirm the advantages of the proposed
approach. For this aim, different models such as dy-
namic fuzzy system and Wiener-type models were

developed. A conventional adaptive neuro-fuzzy in-
ference system (ANFIS) was employed to develop
dynamic fuzzy model. Four and one past terms of
the plant inputs and output are considered as the in-
puts of a TSK model, respectively. The parameters
of membership functions and fuzzy rules are ad-
justed using LSE and back-propagation approaches.

In addition, three types of Wiener-type mod-
els, with the nonlinearities of polynomial, wavelet
neural network and sigmoid neural network are em-
ployed. Four and one past terms of the plant in-
puts and output are considered for the linear part
of the models, respectively. To develop the non-
linear models, we have used the MATLAB§ iden-
tification toolbox. The processes of model train-
ing were carried out to obtain the best possible re-
sponses, where the wavelet neural network consists
of 68 units, polynomial nonlinearity was a seven-
order single-variable polynomial and sigmoid net-
work consisted of 10 units [27].

The error functions are calculated for the devel-
oped models, which are presented in Table 3. The
results indicate the accuracy and feasibility of the
proposed approach.

5 Conclusion

This work presents an application of fuzzy
models with orthonormal basis functions frame-
work for modeling the nonlinear dynamics of bio-
logical treatment processes. The proposed model
was a Wiener-type model, which consist of La-
guerre basis network as the linear dynamic pat cas-
caded by a TSK-type fuzzy system as the nonlinear
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Conclusion 
This work presents an application of fuzzy 

models with orthonormal basis functions 
framework for modeling the nonlinear 
dynamics of biological treatment processes. 
The proposed model was a Wiener-type model, 
which consist of Laguerre basis network as the 
linear dynamic pat cascaded by a TSK-type 
fuzzy system as the nonlinear static part of the 
model. Evaluating the optimum time scale and 
the order of truncated Laguerre network for the 
linear part has been done in first step. In the 
second step, membership functions, 
corresponding fuzzy rules and the parameters 
of consequent for nonlinear part are adjusted. 
The developed model was employed for the 
prediction of DO concentration with respect to 
the changes in air flow rate as the main input 
and dilution flow rate and inlet SSC as the 
plant disturbances.  

The performance and accuracy of the 
developed model were validated by performing 
a comparison between the responses of the 
developed model and the original plant. The 
performance of the developed model was also 
compared with the performances of other 
recent models to confirm the feasibility and 
accuracy of the proposed modeling approach. 
Obtained results indicate that the LNBF 
models are able to describe accurately the 
dynamics and nonlinearities of the system.  

Further improvement may be achieved by 
considering the effects of other plant 
disturbances. Furthermore, using feedforward 
structure may improve the robustness of 
developed models to unmeasured disturbances 
and model prediction errors.  
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4.2 Comparing with other models

Here, some comparisons between the perfor-
mances of the LNBF modeling technique and other
recent modeling approaches have been carried out
in order to confirm the advantages of the proposed
approach. For this aim, different models such as dy-
namic fuzzy system and Wiener-type models were

developed. A conventional adaptive neuro-fuzzy in-
ference system (ANFIS) was employed to develop
dynamic fuzzy model. Four and one past terms of
the plant inputs and output are considered as the in-
puts of a TSK model, respectively. The parameters
of membership functions and fuzzy rules are ad-
justed using LSE and back-propagation approaches.

In addition, three types of Wiener-type mod-
els, with the nonlinearities of polynomial, wavelet
neural network and sigmoid neural network are em-
ployed. Four and one past terms of the plant in-
puts and output are considered for the linear part
of the models, respectively. To develop the non-
linear models, we have used the MATLAB§ iden-
tification toolbox. The processes of model train-
ing were carried out to obtain the best possible re-
sponses, where the wavelet neural network consists
of 68 units, polynomial nonlinearity was a seven-
order single-variable polynomial and sigmoid net-
work consisted of 10 units [27].

The error functions are calculated for the devel-
oped models, which are presented in Table 3. The
results indicate the accuracy and feasibility of the
proposed approach.

5 Conclusion

This work presents an application of fuzzy
models with orthonormal basis functions frame-
work for modeling the nonlinear dynamics of bio-
logical treatment processes. The proposed model
was a Wiener-type model, which consist of La-
guerre basis network as the linear dynamic pat cas-
caded by a TSK-type fuzzy system as the nonlinear
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static part of the model. Evaluating the optimum
time scale and the order of truncated Laguerre net-
work for the linear part has been done in first step.
In the second step, membership functions, corre-
sponding fuzzy rules and the parameters of conse-
quent for nonlinear part are adjusted. The devel-
oped model was employed for the prediction of DO
concentration with respect to the changes in air flow
rate as the main input and dilution flow rate and in-
let SSC as the plant disturbances.

The performance and accuracy of the developed
model were validated by performing a comparison
between the responses of the developed model and
the original plant. The performance of the devel-
oped model was also compared with the perfor-
mances of other recent models to confirm the fea-
sibility and accuracy of the proposed modeling ap-
proach. Obtained results indicate that the LNBF
models are able to describe accurately the dynamics
and nonlinearities of the system.

Further improvement may be achieved by con-
sidering the effects of other plant disturbances. Fur-
thermore, using feedforward structure may improve
the robustness of developed models to unmeasured
disturbances and model prediction errors.
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Appendix A. Cluster Validity Algorithm
There is a problem in implementing the proposed al-

gorithm by Xie and Beni, whereby increasing the num-
ber of clusters QXB will have a tendency to decrease. To
deal with this problem, it is proposed that the number
of clusters to be limited. Here, the maximum number of
clusters (cmax) is selected to be equal to (n0.5) (in place of
cmax = n/3), where n is the number of data points. Please
see [23].

1. Initialize c ← 2, QXB*← 106, cmax ←
√

n

2. Initialize fuzzy membership λi j

3. Find optimal positions of the cluster centers and the
corresponding membership functions using Eq. (18)
and (19) via an iterative procedure

4. Stop the iteration as ||Λk − Λk−1 ||< ε

5. Compute function QXB using Eq. (20)

6. IF QXB < QXB* THEN QXB*← QXB ELSE goto 2

7. IF c < cmax THEN c←c+1 AND goto 2

8. copt = c|min(QxB) 2 ≤ c ≤ cmax

Appendix B. Parameters and Initial Condi-
tion for Analytical Model

Table 4. B.1. The parameters for analytical
WWTP model

Parameter unit value
DOin mg/l 0.5

DOmax mg/l 10
K0 - 0.5
Kd mg/l 0.1

KDO mg/l 2
Ks mg/l 100
R - 0.6

V/Vr - 2
Y - 0.65
γ - 0.018
B - 0.2

µmax h−1 0.15

Table 5. B.2. Initial condition for analytical
WWTP model

parameter unit initial value
DO mg/l 3.2
S mg/l 43.5
X mg/l 423.9
Xr mg/l 212

Table 6. B.3. The range of variations for WWTP
inputs

inputs unit range
DI h−1 0.07˜ 0.08

DOin mg/l 0.5˜1
DOr mg/l 0˜0.2
Sin mg/l 200˜ 220
Sr mg/l 20˜30
W h−1 50˜100

Appendix C. Cluster Centers and MF Pa-
rameters
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Appendix A. Cluster Validity Algorithm
There is a problem in implementing the proposed al-

gorithm by Xie and Beni, whereby increasing the num-
ber of clusters QXB will have a tendency to decrease. To
deal with this problem, it is proposed that the number
of clusters to be limited. Here, the maximum number of
clusters (cmax) is selected to be equal to (n0.5) (in place of
cmax = n/3), where n is the number of data points. Please
see [23].

1. Initialize c ← 2, QXB*← 106, cmax ←
√

n

2. Initialize fuzzy membership λi j

3. Find optimal positions of the cluster centers and the
corresponding membership functions using Eq. (18)
and (19) via an iterative procedure

4. Stop the iteration as ||Λk − Λk−1 ||< ε

5. Compute function QXB using Eq. (20)

6. IF QXB < QXB* THEN QXB*← QXB ELSE goto 2

7. IF c < cmax THEN c←c+1 AND goto 2

8. copt = c|min(QxB) 2 ≤ c ≤ cmax

Appendix B. Parameters and Initial Condi-
tion for Analytical Model

Table 4. B.1. The parameters for analytical
WWTP model

Parameter unit value
DOin mg/l 0.5

DOmax mg/l 10
K0 - 0.5
Kd mg/l 0.1

KDO mg/l 2
Ks mg/l 100
R - 0.6

V/Vr - 2
Y - 0.65
γ - 0.018
B - 0.2

µmax h−1 0.15

Table 5. B.2. Initial condition for analytical
WWTP model

parameter unit initial value
DO mg/l 3.2
S mg/l 43.5
X mg/l 423.9
Xr mg/l 212

Table 6. B.3. The range of variations for WWTP
inputs

inputs unit range
DI h−1 0.07˜ 0.08

DOin mg/l 0.5˜1
DOr mg/l 0˜0.2
Sin mg/l 200˜ 220
Sr mg/l 20˜30
W h−1 50˜100

Appendix C. Cluster Centers and MF Pa-
rameters

ORTHONORMAL BASIS FUNCTION FUZZY SYSTEMS FOR . . .

Table 7. C.1. Cluster centers and MF parameters for air flow rate

clstr1 clstr2 clstr3 clstr4 clstr5 clstr6 clstr7
σ1,i 0.0211 0.0581 0.0645 0.0469 0.0491 0.0523 0.0723
ζ1,i 0.5164 0.5896 0.6371 0.7018 0.7665 0.8562 0.9622
σ2,i 0.0675 0.0622 0.0606 0.0465 0.0487 0.0517 0.0724
ζ2,i 0.5296 0.5758 0.6348 0.7010 0.7661 0.8565 0.9636
σ3,i 0.0700 0.0722 0.0526 0.0475 0.0479 0.0527 0.0709
ζ3,i 0.5309 0.5746 0.6345 0.6998 0.7654 0.8556 0.9636
σ4,i 0.0614 0.0751 0.0688 0.0450 0.0463 0.0532 0.0736
ζ4,i 0.5321 0.5791 0.6358 0.6984 0.7639 0.8557 0.9612
σ5,i 0.0917 0.0801 0.0605 0.0505 0.0483 0.0480 0.0656
ζ5,i 0.4991 0.5802 0.6623 0.7449 0.8143 0.9014 0.9756

Table 8. C.2. Cluster centers and MF parameters for dilution rate

clstr1 clstrr2 clstrr3 clstrr4 clstrr5 clstrr6 clstrr7
σ1,i 0.0807 0.0478 0.0577 0.0431 0.0409 0.0367 0.0692
ζ1,i 0.5333 0.6364 0.6868 0.7651 0.8287 0.8798 0.9629
σ2,i 0.0768 0.0485 0.0553 0.0475 0.0207 0.0447 0.0687
ζ2,i 0.5297 0.6370 0.6863 0.7650 0.8261 0.8819 0.9648
σ3,i 0.5297 0.6370 0.6863 0.7650 0.8261 .8819 0.9648
ζ3,i 0.5276 0.6358 0.6873 0.7648 0.8296 0.8808 0.9657
σ4,i 0.0750 0.0567 0.0567 0.0473 0.0377 0.0475 0.0709
ζ4,i 0.5284 0.6345 0.6844 0.7675 0.8311 0.8789 0.9662
σ5,i 0.2219 0.1811 0.1424 0.1499 0.1344 0.2059 0.2909
ζ5,i -0.711 -0.461 -0.276 -0.045 0.2012 0.4483 0.8824

Table 9. C.3. Cluster centers and MF parameters for inlet SSC

clstr1 clstr2 clstr3 clstr4 clstr5 clstr6 clstr7
σ1,i 0.2094 0.1646 0.1427 0.1409 0.1281 0.1565 0.1875
ζ1,i -0.527 -0.375 -0.124 -0.047 0.2104 0.2652 0.4900
σ2,i 0.2045 0.1747 0.1438 0.1362 0.1253 0.1546 0.1888
ζ2,i -0.539 -0.380 -0.134 -0.044 0.2077 0.2759 0.5011
σ3,i 0.2027 0.1765 0.1470 0.1306 0.1326 0.1510 0.1881
ζ3,i -0.539 -0.376 -0.143 -0.040 0.1977 0.2821 0.5014
σ4,i 0.2094 0.1678 0.1437 0.1273 0.1375 0.1555 0.1914
ζ4,i -0.529 -0.368 -0.149 -0.032 0.1760 0.2829 0.4927
σ5,i 0.1470 0.1254 0.1106 0.1090 0.0708 0.1124 0.1214
ζ5,i -0.085 -0.059 0.1489 0.2700 0.3540 0.3733 0.5898
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Table 10. C.4. Consequent parameters for air flow rate

Ri bi1 bi2 bi3 bi4 bi5 bi6

1 0.1528 0.1648 -0.1836 -0.0267 0.8541 0.0396
2 0.1918 0.2439 -0.1800 -0.0399 0.8027 -0.0037
3 0.1958 0.2557 -0.1550 0.0293 0.7433 -0.0386
4 0.2619 0.3103 -0.2006 0.0926 0.7715 -0.1399
5 1.0415 -1.1269 0.7382 -0.3855 0.9065 -0.0945
6 0.1815 0.2311 -0.1390 0.0221 0.7261 -0.0025
7 0.1414 0.1824 -0.1727 -0.0035 0.7720 0.0811

Table 11. C.5. Consequent parameters for dilution rate

Ri bi1 bi2 bi3 bi4 bi5 bi6

1 -0.0896 -0.1582 -0.0154 -0.0385 0.8963 0.2164
2 -0.1240 -0.2388 -0.0251 -0.1228 0.8948 0.3757
3 -0.1277 -0.2490 0.0088 -0.1026 0.9060 0.3345
4 -0.1408 -0.2930 -0.0648 -0.1118 0.9150 0.4243
5 -0.1052 -0.1987 0.0126 -0.0897 0.9028 0.2843
6 -0.0415 -0.1644 0.0360 -0.0771 0.8874 0.1648
7 0.0085 -0.0383 -0.1658 0.2302 0.9088 -0.0552

Table 12. C.6. Consequent parameters for inlet SSC

Ri bi1 bi2 bi3 bi4 bi5 bi6

1 -0.0109 -0.0389 -0.0295 -0.0155 0.9174 0.0192
2 -0.0131 -0.0492 -0.0073 -0.0333 0.9072 0.0153
3 -0.0131 -0.0362 -0.0234 0.0042 0.9375 0.0166
4 -0.0103 -0.0403 -0.0278 -0.0149 0.9274 0.0192
5 -0.0157 -0.0445 -0.0427 -0.0066 0.9475 0.0117
6 -0.0159 -0.0399 -0.0411 -0.0168 0.9182 0.0118
7 -0.0131 -0.0387 -0.0252 -0.0216 0.9113 0.0168

Table 13. C.7. Characteristics of fuzzy part of LNBF models

Type Sugeno
inputs/outputs 5/1

number of clusters (fuzzy ruccles) 7
and method product
or method probabilistic or

implication method product
aggregation sum

defuzzification weighted average


